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Annotation: An amputee‟s ability to control a 

prosthetic limb is greatly hampered if the limit 

function of data transmission does not match the 

required transfer function of data reception. Robust 

and intuitive control of prosthetic hands is currently 

provided by remote control systems that utilize 

teleoperated master-slave configurations. Such systems 

are just as much a limitation to an amputee‟s freedom 

as they are an important step towards the integration of 

neuroscience and robotics. To replace a lost hand or to 

control a prosthetic hand intuitively, the prosthetic 

hand must follow the same input signals that a natural 

hand can understand. To create a prosthetic limb that 

mimics a human hand, the input signals that would 

yield analogous motion must be identified. Natural 

hand movement is a result of intricate, parallel neural 

processes alongside an exceptionally vast network of 

multiplexed control signals reaching forearm muscle 

motor units. Functional hand movement results from 

the grouping and varying of synergistic finger actuator 

signals at the minutiae of the unit level. The forearm is 

inhabitable for any type of invasive robotic 

mechanism. A hand prosthesis requires a compact and 

low-cost alternative to the embedded actuators and 

sensors that crowd the forearm. Understanding the 

anatomy of the forearm is crucial to a non-invasive, 

compact, and low-cost system. 

The action of group finger motion frequency is 

embedded in the finger‟s fundamental natural 
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movement. Fractionature further groups the buttons to 

uninhibited motion. The robust mechanical behavior of 

this granular action provides varying level control 

throughout a large motion range. Understanding the 

properties of signal redundancy can yield a compact, 

low-cost sensor network. Utilizing low-cost sensor 

alternatives to develop a rapid, low-resolution grasp 

detector can yield component-level behavior patterns. 

Coarse-to-fine control is the opposite of traditional 

approaches; one would first control the global motion 

and then move down to the minutiae. Simulating finger 

motion is very useful for designing the prosthetic hand 

and prior experimentation. With basic control and 

motions simulated, control algorithms could be 

verified once the sensors were placed on a physical 

body. 

  

 

1. Introduction 

With the high incidence of amputators caused by various factors, prosthetic hands are widely 

used in disabled rehabilitation. Most commercial prosthesis is controllable by non-invasive 

surface electromyography (sEMG) which can be measured on remnant muscles through skin 

either over the amputation side or contralaterally [1]. There mostly exists one-to-one 

correspondent biological control movement and control channels of the sEMG signals for 

posture estimation control (open/close all fingers). And the robust and real-time posture control 

can be realized through bio-signal classifier (sEMG pattern recognizer). But for current 

multifunctional hand prostheses, the underactuation and also intention modulation control is 

indispensable. The available modes for hand pre-grasping posture preset of the user‟s demand 

and intention. And the available modes are also a sub-group of the grasp grasping postures the 

user needs. Extensive sEMG worked on doming and also finger opening and closing for hand 

pre-grasping control. But constructing a powerful grasp set of grasping postures from continuous 

residues of constructed sEMG patterns for robust intention modulation presented control is 

challenging. 

To provide an estimate of the generated grasping force during object grasping task in prosthetic 

hands control [2]. It is crucial for the grip control of a prosthetic hand and the safety exploration 

of objects. Real-time prediction to the grasping force with adequate feature signals and robust 

model is still challenging. Eight-channel raw sEMG signals measured on the user‟s forearm for 

prediction modeling and vibration feedback device quantifying predicted grasping force 

feedback to the user‟s elbow. To improve the health rehabilitation and control performance of 

the prosthetic hand, a novel two-stage architecture is powered for this purpose: the dimension 

reduction of sEMG signals is performed at the signal preprocessing stage and the subsequent 

feature learning and force prediction is jointly achieved at the model prediction stage. 

2. Background and Motivation 

It has been well established that the EMG of the remnant forearm muscles, following amputation 

of the hand or a central injury resulting in upper limb paralysis, provides a possible manner to 

achieve control. The approach considered here will focus on EMG signals from the forearm and 

wrist muscles as the main input signals to control the reference signals to prosthetic hands, 

prosthetic/orthotic wrists, and orthotic hands. Increasing the fidelity of control of prosthetic 
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devices while wearing a surface EMG acquisition system and its special gloves, many forearm 

muscles simultaneously can be received from healthy subjects. It is shown that the concatenation 

of different frequency features of the muscle can improve classification and regression accuracy. 

Redundant information from these multiple-input signals can support their adaptability for the 

control of prosthetic devices. 

The design of the powered orthotic device is based on the aforementioned EMG-driven forearm 

gripping/hand movement intention control system which would be applicable to thumb-based 

systems and obviously also transfemoral systems. However, gaining intention commands to 

control a device with a very limited context is physically not reasonable. Although EMG signals 

from the forearm muscles can be used to achieve the desired intent, the information from the 

signals is essentially limited. For example, the 128 choice muscle signals conversed by the 

mapping back to the forearm movements can only produce 15 degrees of freedom. However, if a 

multi-body system is employed, the match of the input/output would be increased and thus 

provide rich mappings for the intention control. Kinematic feedback signals from the motion of 

the intended outfitted device can be readily acquired. Availability of combined kinematic signals 

and EMG, in turn, can also enable prediction of motion outset of limbs or prosthetic limbs from 

physical, muscle driven and input driven approaches [2]. The readily available biomechain and 

dynamic models can provide trajectories and implicit contact forces for an actuation control. 

Certainly, multi-body systems also incur much complexity of the dynamic model and control. 

Efficiency and effectiveness of the learning methods also remain unclear. The EMG-controlled 

powered orthotic system has been designed and undertaken comprehensive tests and 

experiments, and the context of this aspect is detailed in the next section. 

3. Understanding EMG Signals 

The electrical activity of a muscle can be recorded by electrodes close to the muscle. This allows 

the extracted electromyography (EMG) signal to be used for various purposes, such as 

quantifying muscle activity in biomechanical studies, controlling electrical stimulators, or 

controlling prosthetic devices. To interface with a dextrous hand, a suitable methodology needs 

to be devised. This will include information on the origin of the electrical signals, how they are 

measured, and details of real-time processing in a virtual instrument and its application to 

dextrous hand control. 

Motor neurons in the spinal cord send impulses down bundles of nerve fibers to muscles. Each 

muscle consists of several thousand muscle fibers. Within each muscle, motor neuron axons 

form motor units that innervate several muscle fibers, which contract together for a muscle 

action. A muscle receives electrical energy from the active motor units, leading to a summation 

of action potential peaks with components that depend on the depth and orientation of the 

electrodes relative to the muscle fibers. The summation signal leads to a potential difference at 

the electrodes that can be amplified and filtered to produce a usable EMG signal. Thus, the 

origin of muscle EMG signals is well understood [2]. 

Alternating currents on electrodes give rise to capacitive coupling of an unwanted common and 

unwanted reflected signals. This means that amplifiers need to provide muscle impedance 

buffering while rejecting the unwanted signals. The properties of performance amplifiers and 

design considerations for real applications are outlined. To explore EMG signal sources, accurate 

and high-fidelity measurement in real-time is essential. Bandwidth filtering is important for 

accuracy and it can be implemented using virtual instruments, which can easily be configured in 

software, as well as allowing seamless real-time analysis and display while recording. Virtual 

instruments cannot match hard-wired devices in terms of installation simplicity or durability, but 

they are ideal for the explorative research described. For specific applications, hard-wired 

devices are likely the best choice. 

Finally the use of EMG control of a dextrous hand prosthetic will be put into context. Many fine 

dextrous hand movements are multi-joint with stiffness, which makes control of under-actuated 
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hands challenging. Also, there are challenges with the accuracy and number of input signals. 

Finally, there are greater challenges with the transmission of signals to devices used by 

amputees, which is complicated by the loss of tendons and nerves, and other issues related to 

how prosthetic hands are used, such as comfort and hygiene. The complications involved will be 

outlined, and possible avenues for the development of better devices proposed [3]. 

3.1. What are EMG Signals? 

EMG signals primarily represent the action potentials that are generated by the muscle fibers as 

an electrical wave. EMG signals are the summation of all the muscle fiber generated potential 

over a certain time period, which is also known as the recruitment interval. The more muscle 

fibers are activated, the larger the resultant EMG signal. The activation of each muscle fiber 

follows the all-or-none principle, which stated that a muscle fiber either contracts completely or 

it remains relaxed [4]. However, since muscle fibers only an indication of the fact that a muscle 

has been activated and do not provide any information about the timing with which the 

musculature producing the movement has been activated it is imperative to understand their 

biomechanical properties. 

At an even finer resolution, the signal is a summation of various action potentials of each of the 

motor units that is defined as the motoneuron, its axon, and all muscle fibers it innervates. Each 

motor unit will then correspond to a definition of the motor neuron and its muscle fibers. Motor 

units are recruited based on the Henneman size principle where the smaller motoneurons have a 

lower firing threshold potential as opposed to larger ones [3]. The recruitment of larger 

motoneurons results in an increase in muscle force output up to the tactical limit. Overall, EMG 

signals are the summation of action potentials generated by all of the muscle fibers composed of 

an dominated oscillatory behavior in the frequency domain. 

The oscillatory nature of the muscle signal mainly derives from two inherent properties of the 

muscle tissue. First inter-stimulus synchronization of motor unit activity takes place because the 

conduction of both excitation and propagation in the muscle tissue is a distributed process. The 

second source of oscillation is in the „end effect‟ that arises when a muscle is forced to start or 

stop perform a slow linear movement. Coupled with low frequency range sources of the control 

command signal received by the EMG signal processor, the muscle signal shows oscillations 

around the 0.1 - 2.0 Hz range. 

3.2. How EMG Signals are Generated 

An EMG signal is a composite signal produced by the motor unit action potentials (MUAPs) 

from a group of muscle fibers innervated by a particular motoneuron. When a muscle fiber 

contracts, ion gates in the muscle membrane open. The positively charged ionic influx causes a 

depolarization wave to travel along the fiber, exciting adjacent membranes. This propagating 

wave increases the thickness of the fiber and ultimately retards its length. The MUAP is a small 

potential change resulting from the excitation of millions of fibers, visualized by an instrument 

called an electromyograph. A recording distance of 1/1,000,000 of a volt can be visualized either 

on a paper chart or directly on a screen. The distance between the electrodes (detecting points) 

usually varies from 1 mm up to 5 cm [4]. There are two types of electrodes for electrographs: 

invasive and surface electrodes. A surface electrode is a parallel arrangement of conducting 

plates spaced a small distance apart. Invasive or intracellular electrodes take the form of a needle 

or a fine wire that is inserted into a muscle and records the electrical activity that it generates. 

Surface electrodes detect the electrical activity of muscle fibers that are at some distance from 

the point of detection. 

The EMG opened the way for the design of myoelectric control systems. A myoelectric control 

system comprises a sensor that detects the electrical activity of the muscles that contract on 

command in the same way the input signal of a prosthetic hand is produced. This input signal is 

processed and transformed in a way that the control commands are generated to move the 
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prosthesis in a natural way [3]. EMG signals are electrical signals caused by muscle contraction. 

Amputation causes loss of muscle control black box. Surface electrodes can be used to sense this 

control signal (input). Processing transforms the recorded EMG signal into estimates of hand 

openings (output). This output can be provided to a robotic or prosthetic hand in order to control 

it. 

3.3. Types of EMG Signals 

The activity of skeletal muscle is an electrical process, originating from the excitation of the 

sarcolemma and its subsequent propagation through the membrane. Neural excitation produces 

the depolarization of the muscle fiber, which generates an action potential. Involves the 

generation and propagation of an electrical signal, called an action potential, within muscle 

fibers. As the action potential travels along the fiber, it causes the release of calcium ions from 

the sarcoplasmic reticulum. This release of calcium ultimately leads to muscle contraction via a 

series of biochemical processes known as excitation-contraction coupling. The muscle fiber 

membrane (sarcolemma) is an excitable tissue capable of generating action potentials. When the 

muscle is stimulated by the motor neuron at the neuromuscular junction action potentials are 

generated. At the surface of the sarcolemma depolarization occurs and causes the propagation of 

the electrical disturbance into the interior of the muscle fiber through transverse tubules. 

Depolarization of the t-tubules results in the release of Ca2+ from the sarcoplasmic reticulum, 

which binds to troponin altering the arrangement of tropomyosin. Myosin-binding sites are 

uncovered, muscle contraction occurs. [3] The EMG is a recording of the electrical activity of 

the muscle obtained by suitably placing electrodes on the skin surface, or inserting them into the 

muscle belly. The EMG includes a summation of the all electrical activity from a multitude of 

muscle fibers. This is a time-varying potential characterized by its amplitude, duration 

frequency, wave form and direction of the potential [2]. The EMG signals can be classified into 

time domain signals, frequency domain signals and time-frequency domain signals. In the time 

domain θ2 R (θ1, θ2, θ3,…) is sampled as (x 0, x1, x2…xn-1) where n then the Fourier 

Transform is given by X(θ) = X‟e1θ + X‟‟e1 θ = θ1, θ2, θ3…br = b0 + b1e−iθ1+ b2e−iθ2 

+…+bne−iθn. Integration of x is considered here as a linear operator, y(k) = Consider a digitize 

power system Yi(k) = Yi(0) if k = Otherwise y(-)= Yi(k-1) if k = 0. The frequency domain 

consist of f 2 R which is sampled as k = 0, 1, 2…k1, When the Fast Fourier Transform is taken 

separately for each of the sensed input. T1 and T2 will result in T22 resulting in cells with 

repeatition. Let858 behold b1 b2 be represented in terms of the basis as b = i + bi +… + bn(e 

ones). Expansion yields a full-rank matrix. 

4. Prosthetic Hand Technology 

The first prosthetic hands with silicon fingertips were developed in 1970 due to the improvement 

of microelectrode technology. The fingertip possesses sensory capacity, which is an essential 

element for exploring the surroundings and providing feedback to the nervous system, resulting 

in smooth increasing dexterous manipulations. With the rapid development of microelectrodes, 

mechanical triggering modules have gradually been replaced with piezo-resistive or capacitive 

sensors. Biomimetic artificial fingers have been studied extensively, including the fingertips, 

which mimic the mechanical structures and sensory systems of the human fingertip. 

Biomimetic tactile sensors were constructed by integrating self-powered triboelectric 

nanogenerators and piezo-resistive sensors, possessing multifunctionality of touch, hearing, and 

energy harvesting. A piezo-resistive touch capacitance sensor was designed using deep artificial 

neural networks and transfer learning with data augmentation to classify various touch 

signatures. However, few attempts have been devoted to integrating fingertips and contact-based 

sensing methods into dexterous biomimetic prostheses. This is mainly because it is challenging 

to integrate silicon fingertip sensors, micro-dynamical structures, and multi-layer flexible sensors 

into palm modules with dexterous grasping. 

Research focused on developing dexterous biomimetic prosthetic hands with a silicon fingertip 
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for prosthetic applications, such as providing sensory feedback for dexterous objects 

manipulation and incorporating a time delay self-oscillation control strategy for uncertainty 

objects grasping. However, sensory biomimetic devices, including tactile sensors, pain sensors, 

and joint position sensors, have not yet been developed. Moreover, contemporary prosthetic 

hands do not provide a realistic and intuitive way of interacting and grasping objects because 

they lack physical/kinesthetic sensory feedback from the hand and fingertip. [5][6][7] 

4.1. History of Prosthetic Hands 

Prosthetics have been in existence for hundreds of years. The basic design is still predominately 

the same, a hook-like appendage grasping the object, as far back as 3000 BC. The first record of 

prosthetic devices ever created dated back to the period 3000-2500 BC, and were wooden toes 

capable of moving. Skeletal remains from Ancient Rome dated near 400 AD indicate that iron 

leg (below the knee) prosthetics existed. In the post-Roma period, an iron hand was found in the 

excavation of a Mont la Villatte burial site that dates to about the 12th century BC. This was a 

more articulated design, prefiguring analogs created several centuries later in Italy, London, and 

France [2]. After the invention of the first mechanical hand prosthesis in France in the 18th 

century, there continued to be advancements in the field. However, despite many innovations in 

the area of prosthetic knees, ankles and feet, the introduction of this design metaphor has led to a 

stagnation of innovations for prosthetic hands, which are still predominantly based on hooks or 

claws contemporary with those first designs. 

In most clinical applications, EMG signals are acquired using bipolar electrodes oriented parallel 

to muscle fibers. The magnitude and slope of these signals are then processed and used as a 

control signal for the prosthetic device. Until recently, off-the-shelf systems that switched a 

device on or off were available. Among the primary obstacles to the widespread use of forcibly 

powered myoelectrical prostheses was the inadequate ability of users to control them. 

Commercially available myoelectrical prostheses provide only gross control and so have limited 

utility [1]. For instance, an opener or a closure is used to choose the function of the motors 

actuating the hand while a wrist flexor or an extender is required for the wrist. 

This crude control implementation illustrates that it has not been possible to fulfill the promise of 

ancient designs, which could open, close and rotate at wrist, with precise and delayed 

movements, while being durable and quiet, and with low weight and thus energy-efficient. These 

high-end specifications were never, even partially, met with electromyographic control alone. As 

an alternative to muscle action control, eye movements have been considered for control of 

externally powered prosthetics. These systems depend on the availability and processing of a 

video signal illuminating the prosthesis control zone. Conditions such as eyeglass wear or brow-

lifting ability become a bottleneck with these developments. [8][9] 

4.2. Current Technologies in Prosthetics 

Advances in technologies related to hardware, electronics, algorithms, and materials over the last 

few decades have led to the creation of modern prosthetic hands aiming to help amputees in their 

daily activities. Previously, with only one motor controlling simple finger openings and closings, 

prosthetic hands were more cumbersome and difficult to use. Modern prosthetic hands are 

advanced multi actuated underactuated devices that can replicate most of the motions of a human 

hand. A significant problem here is how the amputee can control these advanced prosthetic 

devices. EMG as a control signal is ubiquitous in many engineering applications, including 

prosthetics [3]. Though conventional surface EMG (sEMG) electrodes are still being used, 

implanted (intramuscular) EMG (iEMG) electrodes are asserting themselves as state-of-the-art 

methods in many applications. Robust, low-noise, biocompatible, average-size, and low-cost 

implanted EMG electrodes are available in the market. Others are under active research in which 

the above metrics are being constantly improved. As signal quality improves and the number of 

good-control signals grows, it opens up the prospect of using independent control signals to 

operate device controls. Even so, only a handful of algorithms exist or have been demonstrated 
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together with hardware in full proof-of-concept (POC) demonstrations, and only in a few cases, 

the applications are patented. To well showcase the promised variety, novel algorithms that are 

expected to be of very high performance, especially compared to traditional ones, are being 

developed. The expectation is that these high-performance methods can break into new 

application domains or new tasks, where current methods fall short either in noise tolerance or 

the ability to solve new complex problems. To enable a fair comparison of newly developed 

iEMG processing or decoding algorithms for prosthetic hand control, benchmark data are 

developed and provided as either high-quality iEMG data or predicted actuation traces/input data 

to be compared with the newly developed algorithms. This data could be simulated signals, 

synthetized signals, or real data. [10][11][12] 

4.3. Types of Prosthetic Hands 

Prosthetic hand compression is one of the important approaches for loss and/or decrease of hand 

functionality. As a result, the prosthetic hand should be the most used device in patients with 

above-elbow amputations. Considering hand functionality, prosthetic hands are categorized into 

non-myoelectric, standard myoelectric, and advanced myoelectric based on the number of 

degrees of freedom. Generally speaking, non-myoelectric prosthetic hands require decreased 

complexity and thus less control commands to meet the demand on the system complexity and 

affordability; and there is currently a focus on increasing the functionality of prosthetic hands to 

develop advanced myoelectric devices with either fast or multi-grip mechanism. During the past 

decade, EMG-based control of artificial limbs has been developed for lower-limb prosthesis and 

human-machine interaction as well. 

The prosthetic hand with two degrees of freedom (DoF) is required to properly replicate the 

index finger motion with out-of-the-first-trochoidal mechanism. To address the multi-finger 

motion, it is proposed to utilize a RCM mechanism with one active joint. The force control for a 

multi-fingered prosthetic hand is realized based on 3D position estimation of the fingertip with a 

camera. To reduce the development cost of prosthetic hand, a low-cost underactuated 

conventional prosthetic hand with non-prehension capability is proposed. A mechanical design is 

presented for the 3D-printed multi-fingered prosthetic hand with prolonging grasping force upon 

closing motion. It presents a compact six DoF mechanical design of a parallel link surgical 

robotic finger for minimally invasive surgery. It presents the design and development of a novel 

three-finger gripper with passive rotations about every joint axis for grasping objects of various 

sizes and shapes. The soft robotic gripper inspired by using shape-based passive compliance for 

manipulation of delicate and fragile food is proposed. A robotic gripper mechanism based on 

compliant three-jaw mechanism is proposed for dexterous grasping of different shapes in 

unknown environments. [13][14][15] 

5. Integration of EMG Signals in Prosthetics 

An important part of a prosthetic hand is the actuator that performs the closure of the grasping 

fingers. The motion of the actuator should be controlled according to signals that are directly 

related to the hand opening and finger closing movements. In prosthetics, the availability of 

bioelectric signals has made it possible to control the prosthetic hand depending on the residual 

muscle activity captured by the electrodes. Hence, to control a prosthetic device, different types 

of bio-signals have been used. Recent studies have focused on alternative bio-foundation for 

prosthetic hand control, such as electroencephalogram and near-infrared spectroscopy signals. 

Nevertheless, these methodologies are still in research phase. Hence, myoelectric control 

continues to be the standard control methodology, based on the electromyography signals picked 

up by electrodes placed on the skin surface. 

To do so, it is necessary to obtain EMG signals close to their source, thus avoiding distortion and 

loss of information. Acquiring the EMG signal close to the desired muscle has proven to yield 

superior results. It is possible to implant only electrodes while having the associated electronics 

outside the body. This approach simplifies the surgical implantation of electrodes, with the only 



American Journal of Botany and Bioengineering                                              Volume: 2 | Number: 5 (2025) May                                                        152  

 

complication related to electrode leads failing due to excessive stress. Advances in surgical 

techniques to anchor the prosthesis using osseointegration increase the longevity of the implant, 

enabling a stable and reliable interface between the residual muscles and the prosthetic hand. It 

has become possible to derive control strategies that rely on high-quality intramuscular EMG 

signals and implement them in prosthetic devices based on implantable technologies. With a 

significant improvement in control signal quality, there is potential to diminish one of the 

primary reasons for amputees‟ rejection of myoelectric prostheses, which is limited 

controllability. The previous effort was directed towards obtaining and disseminating a database 

of iEMG signals for developing and testing novel hand control strategies. The database combines 

highly selective iEMG measurements with isometric forces of individual fingers during various 

hand gestures. The implicit novelty of this database is the availability of isometric hand forces 

that enable the evaluation of regression-based control algorithms. To provide a solid baseline of 

the prosthetic hand control performance, the present study evaluates common computational 

methods in the scope of recorded iEMG and force signals. [16][17][18] 

5.1. Signal Acquisition and Processing 

Acquiring electromyography (EMG) signals from implanted electrodes can be performed using 

probes with multiple channels. The signal is first conditioned, digitized, and then transmitted 

wirelessly to the prosthetic system. In case of conductive noise, the information can be 

broadcasted using appropriate protocols to multiple prosthetic systems to further improve 

performance and robustness. Overall, the acquisition, conditioning, digitization, and transmission 

of the signal can also be used as a technology demonstrator to develop assistive technologies for 

paralyzed people, for example, an exoskeleton that can decode movements that the subject 

cannot physically perform [19]. 

In recent years, significant advancements have been made in the field of signal acquisition from 

implanted electrodes. Even a one-channel implantable device can yield robust performance, 

close to that of a similar device with white and power spectral density denoising [3]. However, 

deriving control strategies from those signals is a complex endeavor that requires considerable 

time and computational resources. The need to evaluate the performance of the control 

algorithm, especially in the case of drawing new control sets (to cover as much of the feasible 

input space as possible), can become a bottleneck in the prosthetic hand development process. 

5.2. Control Algorithms for EMG-Based Prosthetics 

There exist various methods for extracting the features of electromyographic (EMG) signals in 

order to subsequently classify them into intent movements or output values. Most of them can be 

grouped into one of the categories: threshold-based classifiers which provide binary outputs; 

one-vs.-one or one-vs.-all classifiers which return votes in favor of classes, i.e. intended 

movements; and regression algorithms which provide continuous output control signals. For the 

sake of simplicity and reliability, this part will present control algorithms which provide binary 

switching or proportional outputs based on threshold detection or regression methods. The 

methods for binary classifiers recognizing generated control commands within 50 ms after the 

onset of intent movement with up to 20% off-line type-I error and with performance degradation 

of less than 10% in various real-world test conditions will be shown. 

Most of currently used EMG-based prosthetic hand controllers are implemented in the number-

of-contact-style manner, where the number of degrees of freedom and subsequently the number 

of binary EMG detectors determines the number of contact modes of a prosthesis, while the 

number of motion commands is limited to the number of ways to trigger control commands. 

Such type of control is considered inappropriately matched for dexterous prosthetic devices 

having more than five degrees of freedom, as they are more effective for executing a repetitive 

set of pre-managed sewing, assembling, production, and creative tasks in engineering rather than 

full-scale finger movements. 
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EMG-driven control systems of dexterous prostheses typically output continuous control signals, 

such as grasping forces or angular position rates for each degree of freedom of a prosthetic 

device. The interest in the direct control of multi-degree of freedom hand prosthetics is 

confirmed by implementing various control algorithms using surface EMG derived from the 

forearm muscles with the number of input to output channels in the ratio of 1:1. On the down 

side however, the proportional control commands need to be sophisticated to be robust, robust 

computation complexity needs to increase, and finally, the training data should be 

comprehensive enough in order to address an individual user‟s signal propagation characteristics. 

Given the practical level of such strong classifiers achievable with popular currently used two-

element classifiers, they might only be used for multi-degree of freedom prosthesis control by 

setting them to switch autonomously between application-dependent modes at the higher level. 

5.3. Real-time Signal Processing Techniques 

In recent years, real-time control of prosthetic hands has gained a great deal of attention. In 

particular, real-time analysis of Electromyography (EMG) signals has several challenges to 

achieve an acceptable accuracy and execution delay. The first challenge is the non-stationarity of 

the EMG signals, which has been addressed by using adaptive techniques or training a classifier 

for each subject before starting test sessions. However, these approaches cannot be used in 

wearable applications. Therefore, it is highly desirable to extract temporally invariant features, 

which remain unchanged under different types of motions or conditions. Another challenge is the 

huge number of extracted features. Although feature selection is generally applied before 

classification, the very small number of features is desired to have low execution delay in real-

time applications. This has been addressed in the past by using the sum of absolute differences of 

wavelet coefficients. However, a set of new feature extraction functions have been proposed, 

applying on each level of wavelet decomposition. The experimental results illustrate that the 

proposed method enhances the accuracy of real-time classification of EMG signals [20]. 

Electromyography (EMG) signal analysis is a method for controlling prosthetic and gesture 

control equipment. Real-time low-power operation on embedded processors is critical. This work 

presents a novel approach to time-domain classification of multi-channel EMG signals according 

to wrist-hand movements. It is shown how, by employing a very small set of time-domain 

features, nine wrist-hand movements can be detected with accuracy exceeding 99. When 

deployed on ARM Cortex-A53, the processing time enables real-time processing and is a factor 

50 shorter than leading time-frequency techniques. It was also found that the most significant 

mean feature was the Fourier-transformed DC component on polynomial learning. The 

implementation on the embedded platform of the deep learning model achieves high 

generalization to unseen data. Furthermore, the implementation is very power efficient, reaching 

a power overhead of less than 140mW [19]. 

6. Design and Development of the EMG-Controlled Prosthetic Hand 

The design and development of the EMG-controlled prosthetic hand is presented in this chapter. 

This includes electrical and mechanical design considerations that were taken into account 

during the design and manufacturing process of the EMG prosthetic hand. The control 

algorithms will also be introduced. EMG-controlled prosthetic hand Classification of 

Manufacturing Methods Since there are many manufacturing processes available in the world, it 

is essential to narrow down the manufacturing options and decide on the best manufacturing 

process for the prosthetic hand. There are many manufacturing methods; However, rapid 

prototyping methods such as 3D printing and CNC machining were chosen due to a limited 

budget. The prosthetic hand was designed using CAD software, focusing on reliability, 

reproducibility, durability, minimum weight, and feasibility of manufacturing. 3D printed parts 

were printed using an FDM printer using PLA filament. The external device was made of 

enclosures, constructs, and materials to mount the IMU sensor, which has to be removed and 

reassembled for charging. The mounting holes used were produced on the actuated joints for 
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coupling with the servo motors. Servo motors coupled each joint of the prosthetic hand. The 

servos of the thumb were controlled due to the difficulty of adjusting joints with many degrees of 

freedom. 3D printed parts were assembled with nuts and screws, while a frame made of 

aluminum profiles to support and connect the servos with the fingers was also designed and 

assembled. The wiring in the palm of the hand was handled in such a way that it would not 

obstruct the movement of the fingers. 

The mainboard of the proposed prosthetic hand is Arduino Mega, with the IMU sensor module 

and the single-channel EMG electrodes connected to it. A wide range of current was chosen to 

drive the project, which can be supplied through a power bank, so it can maintain a long lifetime. 

To achieve this, a breakout board was manufactured for the power MOSFET to be connected to a 

specified voltage; multiple filtering capacitors were soldered on the board. 

6.1. Mechanical Design Considerations 

As the use of prosthetics grow around the world, there is also an increase in use of mechanical 

hands with control using EMG signals. A mechanical hand is designed to replicate the motion of 

a human hand. A high-power servo like the MG996R is used to drive each finger of the robotic 

hand, along with the palm by means of 10:1 gear reduction. Depending on the angle of the servo 

motor, the fingers can bend up to 90 degrees. This range of motion is essential to mimic the use 

of a human hand for effective grasping of any object. Thus, when the corresponding voltage 

from the EMG signal amplifier board goes high, it means the muscle contraction has occurred. 

This, in turn, moves the hand in that particular direction. The given model shows control of 3 

fingers and palm automatically depending on the muscle contraction observed in the arm. The 

design of the hand is complex and it requires substantial time, effort and resources. Thus, a few 

considerations should be made while designing the model. Requests from amputees and 

prosthesis wearers were collected through voting to prioritize design requirements from user 

perspective. Lists of wants and needs were compiled into a wide range of specifications for the 

hand that were then prioritized. Basic mechanical responses, weights, and dimensions were 

attained manually to ensure that the specifications were attainable with the final designs and 

materials. Design reviews were held with faculty sponsors after each phase to gain feedback on 

the preliminary design overall and to receive input from an expert‟s point-of-view [21]. 

Refinements followed these consultations to finalize the hand design. The FPSD necessitates a 

hand that will grasp objects within a broad range of sizes by producing cylindrical and pinch-

type grips on thin objects. To achieve isolated articulation at finger joints, tendons must be run 

through joints with adequate tension to allow for a quick responsive actuation. In addition to this 

specific design consideration, the forearm should contain static overhead or horizontal support 

actuators. An articulated wrist is desired to position the hand in an inclined position. The elbow 

is needed to complement hand positioning to allow for a variety of different grips [22]. Thus, an 

embedded microcontroller will process relevant input data and send control signals to actuate the 

hand's fingers. The on-board microcontroller is powered by a Lithium-Polymer battery that is 

small enough to fit into the forearm casing. The components of the hand design are detailed in 

the following sections. 

6.2. Sensor Selection and Placement 

There is a quarry of questions regarding the placement and the number of electrodes for 

myoelectric control of hand prosthesis system for finger digit movement. The first question 

regards: how many electrodes are needed for EMG fingers digit surface sensing? Answering this 

question inspects the fingers skeletal biomechanical manipulation conditions in terms of muscle 

groups (synergies). Achieving best results using the fewest channels of the sensing signal is a 

vital issue due to the complexity of devising an EMG signal to high-level controller. By 

observing the finger synergies or muscle groups of hand signal sensing, the muscle groups 

exerting flexion and extension actions of the hand are extracted. To test this reasoning 

hypothesis, sEMG signals then should be measured for the above three upward conditions and 
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signals containing channel numbers from 2 to 3 are segmented. The signals are classified to 

predict a finger digit movement intention using an ANN classifier with 90%-sensitivity 

thresholds [23]. Compared with the criterion 1-3, a more complicated movement, the positional 

movement of the index-finger, middle-finger and thumb are selected as another case. The other 

two fingers, i.e., ring-finger, pinky-finger, are strictly fixed in an inward spread pattern and the 

desired fingers (Fingers 1, 2, 3) step in and out in upward and downward movements. Three 

different sEMG signal sensing positions are also chosen as four conditions. The reasons are the 

same as those of the former tests, but signals containing more than 6 channels should be 

considered. The result is reported when the number of channels used in signal sensing is from 2 

to 3 [2]. 

6.3. Actuation Mechanisms 

According to the IEEE, an actuation mechanism aims to execute specific tasks by converting 

energy into controlled motion. The actuators take control commands from the EMG signal 

decoder and output suitable control signals representing motions for prosthetic hand control. 

Motors, torque amplifiers, and motors with gear units are widely used in the actuation 

mechanism designs, and there are various means of transmission, including wires wrapped 

around several anchoring points ( [3] ). This section discusses the basic approaches used to use 

different devices and structures for actuation mechanism designs. 

Pneumatic or hydraulic means are characterized by low weight, high levels of actuation force, 

and mobility. Fingers with these applied polymers and silicone-based actuators are widely used 

on hand prostheses to mimic fingers with biological anatomy. They use soft actuators for 

movement and closed-loop feedback based on joint position and contact force to control finger 

positioning, curvature, and locomotion on straight edges, wall edges, and in front of multicome 

surfaces. However, the control of the actuation mechanism is complicated due to its nonlinear 

elasticity, coupling, hysteresis, and modeling difficulties, while the feedback control needs to 

compute state variables, making it difficult to miniaturize the system. 

A complete prosthetic hand, which mimics human dexterity, is presented in which flexion and 

extension motions are produced by the actuation mechanism utilizing 8-gear module systems 

with 4 servo motors. Each gear module is composed of one DC motors, carbon drive gears, and 

double gear easel joints. The drive gears are installed with the motors as 1:30 gear ratios, which 

can output gear shifts that substantially magnify the motor‟s revolute angle for a stiff connection. 

The rotating motion of the servos can also generate clasping actions mimicking human hands to 

hold bottles. The hand prosthetics can be worn in a natural manner since a palm can be steadily 

attached to the wrist by a pair of pressure rotating mechanisms. 

7. Implementation and Testing 

Prosthetic hands controlled with intramuscular EMG (iEMG) signals can potentially provide 

intuitive and dexterous restoration of hand function. A closed-loop control framework is 

proposed to ensure the robustness and immediacy of hand control, utilizing the unique properties 

of iEMG signals. The prosthetic hand system comprises a non-linear proprioceptive iEMG signal 

processing model and a non-linear finite-state switching glance estimator (FLink) model. The 

control performance against the influence of system uncertainty, anatomy mimicry, and 

operation cost is evaluated by a series of simulations. The plausibility and desirability of the 

proposed control framework, and how to successfully realize it using signal processing and 

control engineering tools, are discussed [3]. Prosthesis rejection is often associated with a lack of 

dexterous control of the prosthetic hand which commonly exists in the transcarpal amputation. A 

recently proposed novel approach of control signals inspired by the idea of proprioception in the 

human to control a novel mechanomyography (MEMG)-based prosthetic hand is presented. 

Unlike traditional approaches that rely on the well-defined hand postures or gestures determined 

by the operator, the new proposed control signals intrinsically characterize the different states of 

hand control and therefore are robust against the uncertainty introduced by intra-subject 
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variability and environmental disturbances. The practicality of the proposed control signals for 

MEMG hand restoration is examined considering the reasonable designers‟ tradeoffs. A wide 

range of tasks using a MEMG prosthetic hand has been demonstrated to indicate the good 

capability and robustness of the proposed control signals and the potential and desirability for 

their translation into clinical practice. [24][25][26] 

7.1. Prototype Development 

There is a sizeable population of individuals who have lost one or more limbs because of trauma, 

leading to a large number of potential users for a prosthesis system that is controlled by 

bioelectrical signals generated by the user‟s muscles. This should allow lost limbs to be replaced 

and free movement restored without a need for large, complex, bulky mechanisms [27]. Neither 

the amputation of a limb nor its loss through congenital disability constructs any barriers to 

prosthetic aid. The idea is to know the nature of the bodily mechanism that is to be replaced and 

to try to duplicate such a mechanism in a bio-mechatronic version. The design and 

implementation of a prosthetic system controlled by EMG signals are presented through the 

complete Mane system development stages, followed by a detailed description of each 

component‟s functioning. The system consists of two main parts: the prosthesis and its control 

station. The first part gathers information from a bioelectrical signal acquisition system, 

processes it, and controls the hand prosthesis through a transmission channel. The second part 

processes the signal information captured by the first one; then it communicates with it and sends 

control commands suitable for the prosthesis. The techniques behind this development can be 

easily adapted, and such a way that the state-of-the-art technology is designed can be adapted 

into a simpler or more complex system according to new user‟s requirements [28]. The 

prosthetic system development have been based on signal characterization and classification in 

real-time closed-loop operation systems. The on-line acquisition and processing of selected input 

parameters extracted from EMG signals are made, and they can be used as commands to control 

the members of the prosthetic hand. The chosen input parameters have been carefully selected to 

maximize the classification performance by balancing computability (complexity), selectivity, 

and noise resistance (minimum variance). Classification and control of the prosthetic hand with a 

RS-232 serial communication are presented. It should be noticed that both systems can work and 

require no external intervention. 

7.2. Testing Methodologies 

The basic approach for evaluating the algorithms for controlling prosthetic hands and 

development of the test bench for stimulating hand gestures has been discussed. In this section, 

specific details regarding how to evaluate the algorithms and how to team up multiple measuring 

channels for the simplest setup will be elaborated [2]. Typical laboratory tests to verify the basic 

working principle of the algorithms, such as sensor signal conditioning, quantization, and 

discretization methods (step function and rectangular measuring pulse), will be presented. These 

tests can be applied to a prosthetic hand simulator equipped with the prosthetic hand grip and all 

other mentioned types of sensors. Typically available sensors include load cells for measuring 

gripping forces, flex (bending) or Hall-effect sensors for measuring angular positions and joint 

velocities, etc. A vision system providing a 3D map of the entire test area for more advanced 

laboratory testing can also be made available so that all objects in the test area will be detected 

automatically and marked with probability areas for object localization. 

The initial step in achieving the desired control of the prosthetic hand grip will be to create a 

programmable set of test stimuli to verify the prosthetic simulator in measuring the grip angle. 

There will be seven stimuli, corresponding to the circular arc angles of grip opening/closing of 

70/0, 100/0 and 120/0 degrees, which are achieved using a motion capturing system and 

controlled by its application programming interface. Similar to improving the simulation of 

prosthetic hand control, control algorithms will be reshaped and that [3]. 

Development of a low-cost alternative prosthetic hand controller implementing a closed-loop 
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proportional control methodology based on measuring finger muscle electrical activity has been 

detailed. Experiments have shown that this design is able to track target finger movements, while 

avoiding problems associated with the use of gloving controls. Techniques are presented to relate 

forearm muscle electrical activity to the movement of an anthropomorphic robotic hand. The 

degree of freedom mismatch between the controller and the prosthetic hand is addressed through 

an approach that accounts for the flexible mapping between multiple muscle inputs and the target 

finger movements. A custom 2-D printed housing for the finger surface electromyography 

sensors has been developed that enables straightforward adjustments. 

7.3. User Trials and Feedback 

Testing the EMG-PR system occurred over two trials in March and April 2014. The first 14 of 

21 participants completed the initial test at the Lusail University and Qatar University. All 

aspects of the project were explained verbally and on paper. To ensure an acceptable EMG 

quality, the healthy participants‟ skin was prepared using alcohol wipes and scrubbing, if 

necessary, to create a surface for the electrodes to make proper contact. Testing equipment 

included a laptop running MATLAB to process the EMG data and a portable DATAQ system for 

the remote lab. The minute between trials was short to let the subjects relax with minimal muscle 

activity. It was verbally explained that it was more preferable not to think of any movements 

during the resting trials. Between the trials, segments of high activity from one hand were 

replayed while other hands were on idle. Then, all participants had to make “Natural 

Movements,” which were followed by another CTRL. Afterward, the participants were asked to 

do EMG recordings with natural movements again with no limit. Resting and CTRL recording 

time would be similar to or short than in the first experiment. Six normal subjects competed 

EMG recordings again, while assistance assisted recording for at the same lab. The laptop was 

moved to QU in Doha to test the MEMS IMU on hand. A new unprepared surface was tried with 

the same electrodes. To ensure clarity, the electrodes were attached to human dummy arms 

avoiding the use of water and scrubbing. Cleaning could not be done here as it would expose the 

whole issue regarding a.i. EMG-PR to the client. A basic surface with lot of noise that made 

clear sorting more difficult was considered for trial. Testing was held to freeway the setup with 

no subject alteration allowed to standardize the training session. This should increase robustness 

as noise rejection is evaluated in cases of more type of noise initially not planned for training. 

When action units were separated well for learning, MEMS IMU tests would be held using a 

similar kind of policy naively imposed [29]. 

8. Challenges and Limitations 

Many challenges remain in creating systems capable of robustly detecting user intent across 

participants, tasks, and settings. A first batch of open-source data tools has been released to help 

the community address these issues. These tools can be used to benchmark further work on 

automated detection of finger movements and to provide training sets for novel deep networks or 

signal-processing architectures. The hope is that they will help serve as ground truths for the 

directed creation of datasets to mitigate the risks of data mining while prioritizing ergonomics. 

The relative simplicity of the current system leaves many desirable confounds unmodeled, such 

as the geometry of the hand, EEG electrode placement and bulk, and participant anatomy. Future 

work to add complexity will allow broader generalizability of results and yield further insight 

into the portion of the data that is not explained by the current architecture [3]. 

Another important challenge is the account of a participant population that may differ in age, 

handedness, gender, and many other aspects. This study concentrated on data from a narrow age 

range and focused only on right-handed participants. Future work should broaden the participant 

distribution to examine additional confounds, particularly any sex differences. Exclusion of the 

left-hand finger movements from the data was done to ease the early interpretability of auxiliary 

features, but this may also have unintentionally simplified the task too much. Future work could 

address the left hand, in order to broaden the potentially applicable results. The high raw-MEG 
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dimensionality meant that a larger band of principles, methods, and architecture types could be 

explored without overfitting, but there remains a risk of hyperparameter overfitting. 

Consequently, it is a goal of ongoing work to hold out a proper set of channels and ranges of 

applicable hyperparameters for any network family chosen, such that it can be assessed whether 

the architecture has been appropriately chosen or if those hyperparameters should be adjusted 

differently. 

As performance is empirically linked to many aspects of the signal and data pipeline, concurrent 

to the expanded dataset, new signal-processing methods will be explored to denoise the MEG 

data within each run. This denotes methods to optimize the removal of noise and artifacts not 

linked to the finger movements, and potential modeling approaches for the formatting of 

auxiliary features. An obvious question is how interpretable the trained networks are. With the 

use of the example-subset‟s neural fit expression (and other methods), an effort will be made to 

assess the trained networks‟ interpretations of their input data, and whether more interpretable 

architectures can be found to explain how the features are transformed into the task responses. 

8.1. Signal Noise and Interference 

The main factor affecting the continuity duration of the artificial limb control is the presence of 

noise and interference in the signal acquired. Although many noise sources such as thermal, 

radiation, and power supply noise do not depend on the acquisition system or environment 

design they can be attenuated by using acquisition systems fabricated with precision 

components. Thermal noise, for example, is generated by thermal agitation of the charge carriers 

in conducting materials. All purely resistive materials emit thermal noise, which is often 

described by Nyquist‟s law. This law states that thermal noise power, P_n, in W, is proportional 

to temperature T in K, resistance R in Ohm, and bandwidth B in Hz. To keep the effect of this 

noise to a minimum, low-noise and low-drift amplifiers with low gain-bandwidth product should 

be employed. Radiation noise is produced by electromagnetic waves, primarily in the radio 

frequency, caused by thunderstorms, solar activity, lightning strikes, and sparks in machinery 

and electrical systems. To minimize the effect of radiation noise as much as possible, shielding 

of electrical wires and components with proper grounding should be mostly done. Coherently 

coupled subsystems with aligned reference frames should also be employed to prevent coupling 

capabilities among different signal domains that do not need to interfere with each other. Power 

supply noise refers to any fluctuation in the supply voltage. To minimize its effect, decoupling 

capacitors should be mounted on the power supply lines as close as possible to powered circuits. 

It also helps using voltage regulators, powered with lager delay capacitors (up to a few hundreds 

of microfarads), for circuits that are very sensitive to supply fluctuations. Conductive coupling 

should be avoided if the signals are expected to contain high-frequency content, as normally in 

biomedical settings like EMG signal acquisition. The effect of noise can be modeled as additive 

white Gaussian noise (AWGN). It can be characterized on a per-channel basis and, on an 

episodic basis, spectral Radon transforms able to characterize the linearization effects on the 

baseband spectrum of arbitrary time-dependent and time-independent modulations [4]. 

8.2. User Adaptation and Learning Curve 

The human motor system operates with innate control strategies that are well-suited for 

controlling limbs or limbs-like mechanisms. Interfacing computers, robots or prostheses with the 

motor system requires either learning new control strategies or translating forest strategies in a 

way that makes them usable in conjunction with the requisite mechanics. For a real-time 

interface, expectations also require high performance across diverse unfamiliar tasks. Human 

motor sensors act through sensory feedback loops; so it would follow that the most successful 

interfaces would involve direct interaction between the motor and sensory systems [30]. 

Most forms of prosthesis control sense myoelectric signals in the residual limb which are 

processed to detect the intention of the user. The prevalent decoding method is pattern 

recognition, which transforms the timeless signals into mutually exclusive class probabilities. 
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Each joint class uses an independent model, compares the probability nominal to all the output 

metrical thresholds, and sends the highest class to execute. Because of lack of training data, such 

models calculated by batch learning techniques are imprecise. The batch trained bespoke 

classifier method suffers from severity misclassifications in class boundary regions. Casting an 

intuitive interface fate to happen on the operator interface can realize the true open-loop ability. 

A joystick can directly control the individual finger and significantly minimizes confusion. 

The offline and online performance of the learning process gradually improves. A data-driven 

classification metric based on parameters is proposed to interpret the relationship between user 

aptitude and prosthesis performance on finger. Net and mean distances descended with 

increasing knowledge while the relative width or slope gradually converged to zero. These 

parameters measure the comprehensiveness of kinematic control on the decoder inputs and the 

indecision degree of individual finger operation. When in the learning testing process, groups 

kept the long-term effects of switching the control interface while time data preceded to decline 

as the practice continued. With data-driven classification metrics, after investigating the learning 

process and the difference between different decoding methods, the gap between state-of-the-art 

offline performance and real-time performance is bridged. 

8.3. Technical Limitations of Current Systems 

The progressively increasing body of knowledge concerning the role of electromyography 

(EMG) signals in prosthesis control has led to the development of many systems able to control 

the motion of a prosthetic hand via EMG signals. During the past two decades, such systems 

have also been sold commercially and made available to users, mainly for controlling upper limb 

prosthetics. Nevertheless, despite the advances in both hardware and software, currently 

manufactured EMG-controlled prosthetics hand presence technological limitations that impact 

their performance. Documenting such imperfections is important, since it can expose areas in 

which technological development is still to be conducted and it can, consequently, provide 

guidance for novel research approaches [3]. EMG signals originating from a desired muscle are 

often distorted or excessively mixed with signals from other muscles, which, in turn, can hinder 

the performance of subsequent processing. To do so, it is necessary to obtain EMG signals close 

to their source, thus avoiding distortion and the loss of information due to mixing with signals 

from other muscles and attenuation in biological tissue. Acquiring the EMG signal close to the 

desired muscle has proven to yield superior results using fully implantable devices that record 

EMG signals directly from the surfaces of multiple muscles, including signals from muscles 

deep within the arm that are very difficult to single-out from the skin surface level. Instead of 

implanting the whole recording–transmitting device, it is possible to implant only electrodes 

while having the associated electronics together with a power source outside the body. This 

approach simplifies the surgical implantation of electrodes and the maintenance process, and the 

only complication is related to electrode leads failing due to excessive stress or a limited number 

of wire-bending cycles. With advances in surgical techniques to anchor the prosthesis using 

osseointegration, the longevity of the implant is further increased, thus enabling a stable and 

reliable interface between the residual muscles in the forearm and the prosthetic hand. As a 

consequence of surgical and technological advances, it has become possible to derive control 

strategies that rely on high-quality intramuscular EMG (iEMG) signals and implement them in 

prosthetic devices based on implantable technologies. 

9. Future Directions in EMG-Controlled Prosthetics 

Many avenues exist for future improvements to control of prosthetics with EMG signals. 

Technological enhancements to hardware, algorithms, and user experience will increase the 

control capability and robustness of this system, and continued research focus on alternative 

solutions to the core scientific and engineering problems will enhance the long-term viability of 

EMG-controlled prostheses. Commercial systems are likely to initially follow the path of least 

resistance, improving on existing commercially available systems, followed by the feasibility of 
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researching alternative control principles. Capacitance and location of electrodes has been 

studied and optimized to capture EMG signals. Reliable, portable hardware has been created that 

can accurately filter, amplify, and digitize raw signals for transmission through Bluetooth to a 

computer on which control algorithms can be run [2]. Work would need to be done to encode the 

algorithms into firmware in the prosthetic unit to allow it to independently send commands to the 

motor drivers. Because the control algorithms require a sufficiently large window of EMG 

samples, the processing requirement of control algorithms is not compatible with the current 

expectation that the prosthetic unit will operate in a standalone mode. Drone control applications 

could benefit from lighter, lower-power hardware than currently used. Simple attitude control 

algorithms could be tested in the lab using the presumed IMU capabilities. Finally, exploiting the 

relative inertial frame between the limb position and inertial frame, more general control 

commands that execute a sequence of rotations could be studied. 

An intuitive approach to the control problem would be to offline correlate signals captured by the 

IMU with the sequence of generated motor commands to execute a training routine with selected 

gestures, discarding those whose motion characteristics did not meet user motion. Perceptual 

blends of captured body and control movement could be used as feedback to the user during 

control training. Systems could exploit any additional user-stemming perception of motion 

affordances that could speed system take-up. Ultimately variations of gestures used to control 

affordances could be incorporated into learning algorithms that increase the robustness of 

granted controls over time, while also allowing refinement of the controls‟ commands. Learning 

systems could also build mappings between a spectrum of user-based affordances and alternative 

modes, which systems would toggle when a different affordance was perceived. Control surfaces 

capable of tracking the finger flexion angle and velocity could be built to improve accuracy and 

robustness. This would extend limits on data input and open the door for continued avenues to 

advance the technology. 

9.1. Advancements in EMG Technology 

Over the past couple of decades, a rising trend has been noted in scientific publications that deal 

with the acquisition, processing, and control of prosthetic hands based on electromyography 

(EMG) signals. Most earlier works were focused on surface EMG (sEMG) signals acquired from 

the skin surface above the forearm muscles. However, recent trends are shifting toward the 

implementation of intramuscular electrodes for recording these signals, as the quality of the 

control signals is obviously better when recording closer to the source. Alternatively, the sEMG 

can be acquired closer to the muscles by using a fully implantable device [3]. 

The device records sEMG signals directly from the surfaces of multiple muscles within the 

forearm with a high spatial resolution. A so-called “fuzzy” electrode was developed and tested 

for measuring sEMG from a single forearm muscle. Again, instead of implanting the whole 

recording–transmitting device, it is possible to implant only electrodes while having the 

associated electronics outside the body, so that the sEMG measurement is carried out through 

wires. Such a device was also developed but, as it was partially implanted, it included electrodes 

that could be acutely damaged during a muscle contraction or by high temperature. Nonetheless, 

this approach greatly simplified the surgical implantation of electrodes and it has been 

successfully developed and commercialized. 

With advances in surgical techniques to anchor the prosthesis by means of osseointegration, the 

longevity of the implant is further increased, which enables a stable and reliable interface 

between residual muscles in the forearm and the prosthetic hand. Between other options, the 

implant could be occluded so that the sealing was carried out between a biologically inert 

implant and the skin. One possible solution to immunologic incompatibility is to allow the tissue 

to grow around the prosthesis. All of the mentioned approaches constrain the design and 

robustness of the portable hardware that assists people with disabilities, as it should be somewhat 

implantable to protect it from mechanical shocks, moisture, and other ambient influences. 
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9.2. Potential for Machine Learning Integration 

Research on prosthetic hand control applications involves the decoupling of the surface 

electromyography (sEMG) signal to achieve an adequate and efficient way of controlling a 

prosthesis, this control should look as similar as possible to the natural movements of the body. 

One of the concerns in this field is the ideal placement of the electrodes according to the 

muscular region. Also, the electrode characteristics and technology are of importance in this task 

and especially in sEMG recording to obtain clean inputs for the data mining step [31]. Finally, 

there is a step of data mining where it is attempted to look for features in raw sEMG signals to be 

used in classifiers; all the features extracted should be robust to acquire generalization for 

movements and users. The challenges for a database are manifold, as prosthetic devices are 

increasingly exhibiting a complexity and XXI century features; however, it is known that 60% of 

these devices are passive and have only 1 to 4 degrees of freedom (DoFs) while 10% of them 

have more than 10 DoFs. 

Intuitive control systems can accept more functionalities in machine learning techniques. 

Unfortunately, this has not been met even though many investigations utilized machine learning 

techniques to classify and interpret the EMG signal before a prosthesis or neuroprosthesis. The 

advancement of machine learning systems plus the importance of such a control system have 

created a need for control systems in prosthetics, exoskeletons, and rehabilitation. This challenge 

is even higher in contexts with a large number of classes associated with the movement; 

however, it is a challenge for real-time training and practical application of machine-learning 

systems in complex prosthetic systems and uncontrolled environments [32]. 

Deep learning as a more novel strategy can be useful for improving classic classifiers as it can 

automatically generate the features; however, deep-learning systems require a huge amount of 

data, so in a similar direction as the previous items, the high budget needed for obtaining good 

performance hampers the utility of the method. In addition, the use of the time-frequency 

features in EMG signals allows some systems to be designed based on attracting unwanted 

electrocardiogram noise of the sEMG signal as well as noise-resistant classifiers using temporal 

features on Suzuki EMG signal. Without claiming supplanting the time-domain features, these 

strategies allow working better with low signal noise. Much work is emerging in this category. 

9.3. User-Centric Design Approaches 

The usability of a prosthesis does not solely rely on the function of the artificial limb itself but 

also on the interface between the limb and the patient. Commercially available myoelectric 

prostheses can provide users with satisfactory control, permitting an aperture control of 13 to 16 

different grips. However, most commercially available control techniques are designed for 

healthy subjects. This results in limitations in real-world performance, such as a suboptimal 

number of input channels and slow switching. The key concept behind machine learning-user-

centric design is that the control interface and the signal processing and machine learning intake 

of user-related information in order to personalize and adapt the control mapping for each 

individual user. This can be achieved with little or no engineering efforts of the user, allowing 

continuous adaptation of the control interface after the initial fitting phase. 

Pattern recognition-based control techniques identify pre-defined patterns of muscle 

contractions. User adaptation can either enhance the overall performance or avoid sudden 

performance decrease in the transition from expert to novice users or reconstruction phases. 

Different adaptations include training of hardware, update of model parameters during 

unsupervised use, and replacement of machine learning algorithms in real time. The control of 

the prosthesis and the signal processing and machine-learning algorithms are divided into 

function-centric components to disentangle the challenges of prosthesis control. The control 

strategies are robust against noisy data, a sensor input that the subjects did not have during 

training, and a change in the reference signal rate. The performance under noise dictates 

additional model complexity that may shift the utilization of control complexity toward control 
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cost. Performance decreased in off-time when the user had not previously used the prosthesis for 

hours or days and when precise control is required. 

A review of advanced patterns for user-centric prosthesis control interfaces candidates for future 

research directions highlights technological and usability considerations. The need for translation 

relevance in research foreshadows new methodologies such as newly developed application 

voltage transformers convert the output voltage of any application-compatible sensor to a digital 

signal out of an external motherboard. Implications for current and future work are outlined, 

indicating the path human-machine interaction in bionic limb control will take next [33]. Deep 

learning-based sEMG force control estimates the grasping force of the prosthesis over multiple 

force levels. A regression-based grasping force prediction method using sEMG and deep 

learning is proposed. 

10. Ethical Considerations 

The development of advanced prosthetic devices administered by human intervention relies on 

robust and easily interpretable control signals. Surface electromyography has been utilized 

extensively to develop control strategies for commercial prosthetic devices, but has arguably 

functional limitations due to signal distortion and limited controllability. Thus, the need for 

muscle activity signals with higher quality than surface EMG signals is an actual necessity that 

has become possible with the development of implanted electrodes and electronics. 

Intramuscular EMG signals acquired using disposable electrodes embedded in a biocompatible 

polymer, customizable in shape and size, and connected to external electronics via a 

transcutaneous connector is a promising direction since it simplifies the surgical implantation 

and prevents infection. The evidence from recent research indicates that accurate results can be 

obtained while acquiring intramuscular EMG signals with this approach [3]. 

Intramuscular electromyography has proven to provide better quality and quantity control signals 

and implantable devices that can aid in acquiring EMG signals closer to their source. However, 

with leading-edge electronics and artificial intelligence developments, devices smaller than coins 

are possible to create, leading to a potential breakthrough in control strategies for implantable 

devices. Many consumer devices promising neural signal recording are emerging, but taking 

them deeper will require more research [27]. A better understanding of the controls can simplify 

the control and post-processing task, even in nano-size devices. Effective mirror devices can 

augment velocity to totally replace lost limbs, while less invasively; a 128-channel neural 

interface has the potential for telehealth applications. Since lost signals are not entirely known, 

this is a testing phase where it is essential to create simpler versions to understand their limits. 

10.1. Accessibility and Affordability 

Currently, the development of clinically applicable prostheses with an open-source approach in 

mind is still an innovation in the world. Affordable and accessible alternatives are needed due to 

the prohibitive expense of current solutions. The desired design requirements include a cost that 

does not exceed 2k USD, the ability to 3D print at least 90% of the components, a versatile pin-

joint design for a minimum of 2-finger gestures (grasp, index finger, trigger), and a design that 

experts in CAD software can adjust to fit the user. These requirements were then included in a 

design proposal to create an open-source accessory for a laboratory-standard 3D panorama 

scanner. It was determined that the design process should focus on the mechatronics first and 

that it would be preferable to create a testbed using 3D printing and small electronics already 

available in the lab. For those not involved in ongoing chores, tanks were designed. 

The design iteration of the differential drive base then started. Using estimate pi as a base, the 

design proposal included a pyramid of conduits on which the tanks would be mounted, an 

unobstructed front-end support with a 3D-printed processing compartment, and a rounded back. 

The prototype was then manufactured, and the sandy structure was tested on real-life sandy 

landscapes. Then, the workflow was defined, sensors were chosen, and the spatial synchronicity 
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of the data modalities was determined. The interface was created using an alpha-version of the 

class hierarchy. When applying for different objection recognition challenges in a panorama-like 

structure, the object plugin system was explained. Its development is progressing, with a beta 

version almost finished, but the full online version will not be completed by the time of writing. 

An object categorization model was trained and successfully executed on an agent, providing 

obstacle avoidance in two environments with omnidirectional cameras, one of which is a testbed 

inspired by the real sandy structure [22]. 

10.2. Impact on Quality of Life 

Hand prosthetics have been utilized for decades to ameliorate the quality of life of amputees 

provided with artificial hands. During the years, prosthetic hands came a long way from 

mechanical, wooden, or cable driven hand to fully motorized hand with various sensing 

technologies that are able to execute several degrees of freedom. They can accomplish a large 

variety of grip configurations that permit the grasping of diverse kinds of objects [34]. 

Nevertheless, prosthetic hands that do not require any invasive surgeries of the wearer and make 

use exclusively of surface electrodes are mostly myoelectric and control the prosthetic hand 

using EMG signals. EMG signals are bioelectric signals processed for estimation of forearms 

movement by using denoising and feature extraction methods, determining multiple wrist hand 

grips to control hands‟ movement and grasping. The detection of wrist angles is carried out by 

novel Muorking filters with which independence to elbow movement is possible. The dominance 

of the proposed Exponent Behaved Dual-Term Gauss process is proved for motion control of 

prosthetic-hand compared to state-of-the-art methods. The design of our hand prosthesis opened 

up new dimensions in 3D printing field, and the understanding of materials applied in the 

mechanism led us to discover new conductors. The proposed hand is tested on real platforms and 

able to function with EMG, 2.4 GHz remote, wired, touch based and non-touch based control. 

Despite the extensive research published, there are still few works assessing the performance of 

myoelectric grasps based on synergy EMDs. Myoelectric prostheses allow to estimate hand 

contact based on bioelectrical signals acquired from residual muscles and have in general, 

different names. Using a device that implements BioSignals as an actuator was introduced and a 

low-cost hand prosthesis was build that controls the synergy of a novel bio-inspired controller. 

Controlling this experimental hand through an EMG/EEG interface, inducing muscle activations, 

the projection of information processing was developed in a way that bio-inspirated robotic 

hands can be cabable of executing dexterous grasps at a large variety of proprioception and 

sensory input in a loose way. 

10.3. Privacy and Data Security 

Electromyogram (EMG) is the electrical activity of muscles and is recorded through surface 

electrodes, either dry electrodes or gel electrodes, to detect the electrical signals of muscle 

contraction. Noisy EMG signals are always present due to the electrical activity and contraction 

of associated muscles, other body movements or muscle relaxation. Therefore, ordinary filtering 

techniques need to be applied to process raw EMG signals for control. After filtering, EMG 

related features need to be extracted and passed through a classifier to determine the control 

action intention. 

In modern prosthetic hand applications, controllers are designed to perform grasp tasks. For 

different grasp tasks, the finger movements must be properly defined. Once the control intent is 

interpreted, the reference velocities of each joint presented in the digital form will be 

transformed into control signals acting on the analog finger motors. The resolution of the PWM 

control signal is usually an 8-bit resolution from 0 to 255, while the new age motor drivers can 

deal with 10 to 12-bit signals. The finger motor was excluded from the analysis because it is not 

directly related to bio-signal processing. The conditions of the hand used in this article are the 

same. Two circuits AC and DC/DC provide a regulated 5/3.3 V power supply to the controller 

and the Bluetooth receiver, respectively, both driven by a 9V battery. Devices are interfaced 
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using custom written embedded software and monitor the fingertip force using 1 kHz acquisition 

rate. 

The devices can provide on-line estimation of each fingertip force F through spikes analysis of 

the corresponding zanalyzer outputs using an off-line algorithm. Tilt angle α of the zenithal 

plane seems to be quite stable within limits of ±5°. Variations from the rest value of about 3° due 

to finger flexion and opening, do not lead to significant F under the condition of a small offset 

α0. Although z-axis variation typically results in significant pressure changes for a general force 

sensor, the construction of the disposer would limit the FC response. 

11. Conclusion 

Continuous incremental improvement requires constant effort. For many years to come, efforts 

must still be devoted to implementing standard procedures for thorough testing with detailed 

documentation of performance comparisons and results. 

For proper use, redundancy is highly recommended in hardware components even though the 

energy requirement of devices increases. A theoretical proposal of using a computer vision based 

micromachine with a compact servo motor for scanning and image processing was made; 

however, this has not yet materialized since further efforts must concentrate on low-cost 

components and achievable solid-state principles of operation in their very respective 

applications. Some sketches of building blocks that can be used together with commercially 

available devices are also included. 

Unfortunately, experimentations in this area must first be made with attention paid to low-cost 

mechanical vibrating hybrids, so that the requested comments prior to the projected devices can 

be met. Device redundancy is also recommended here, despite increasing system cost and 

requiring a larger footprint. A detailed design is included here that is based on a commercially 

available micro electromechanical systems mirror, but also different types of mirrors would meet 

the requirements. 

In the present computer vision system, autofocus routine compensation for camera shake due to 

larger lenses is also provided with given force feedback information of an adjustable focal length 

based lens pair. Continuation of exploratory work in the far-infrared domain in the development 

of a low-cost off-the-shelf forward-leverage phased array system that works by both knitting and 

stitching paths was also presented. This includes discussions of how other desired scanning 

devices might knit, an offset beam mode, and the promised future optical engineering 

competition of multiple digital-to-analog converters in data rate and cost; as well as optical 

aseismatic effects involved in greater order temporal harmonics of moires. 

Off-an-axial solid state approach to record and view structures of geographical data, as well as 

iteratively inexpensive hardware and software fruition, were also put forward. Lastly, the state of 

the art in optical resolutions below the alternating sawtooth sampling cap was additionally 

discussed. Overall, the paper summarized the presented achievements and further design 

proposals over the years. 
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