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Annotation: Although the common practice in 

drug discovery is to screen compounds against a rigid 

structure for faster evaluations of multiple candidates, 

the robust prediction of drug binding should include 

the flexibility of the protein targets. For 

pharmaceuticals that induce the desired state of a 

protein, the receptor-drug dawning process can often 

be captured within protein conformational fluctuations 

about a bound crystal structure. Molecular Dynamics 

(MD) simulation has become an effective approach to 

see such fluctuations and has matured to provide a 

complement to and a probe for X-ray crystallography. 

One-tenth nanosecond MD simulations produce 

sufficient flexibility information about the structure 

and configuration of drug binding which are used for 

ensemble docking against a cluster of the sampled 

structures. Docking methods have improved to 

properly account for topology and conformational 

changes of a protein through models such as the rigid 

receptor, flexible compound, induced fit, and ensemble 

docking. The first three methods require extensive 

sampling and are computationally more expensive than 

rigid receptor docking. Meanwhile, parallelization is 

possible at either conformation or compound-level 

with respect to the respective dimension of the 

problem but cannot be performed at both levels since 

the dimensions of the problem are critically diverse in 

MDO. 
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There has been considerable interest in deriving 

and implementing accurate, fast, and flexible soft 

potentials in machine learning (ML) frameworks. 

However, these approaches have either been serial 

implementations with no speedup with respect to 

numerical relaxation or did not fully utilize end-to-end 

optimization through gradients. Since a network 

trained on a protein family would not be applicable to 

one outside the family,. Molecular MD would be a 

better training starting point as it ensures better 

physical prior during learning until reaching a steady 

state. 

  

 

1. Introduction 

The past few decades have witnessed the successful application of artificial intelligence (AI) 

techniques in diverse fields, such as computer vision, speech recognition, natural language 

processing, and self-driving vehicles. However, advances in the computational modeling of 

molecular systems have lagged behind by some degree, mainly due to limited trainingset sizes, 

difficulties in modeling geometry-dependent dynamical systems, and stringent computational 

requirements. Recently, there have been rapid developments of profound AI models and 

exponentially growing chemical and biological datasets, which renew the hope for a revival of 

AI models in molecular sciences. In particular, new generation methods with equivariance and 

domain generalization features are capable of providing data-efficient molecular dynamics (MD) 

modeling. In addition, newly curated grand master datasets, covering diversity spaces in 

chemical compound structures, properties, and molecular reactions, enable the pretraining of an 

AI model on a large scale and a fine-tuning step at the task level, akin to the success of large 

language models in natural language processing and computer vision. Such dataset-accelerated 

AI training enables rapid adaptation to new tasks by expanding the current training datasets in 

order to improve modeling accuracy. The ultimate scope of applications extends to new theory 

discovery, visualization, and multimodal molecular modeling [1]. 

The emphasis is on AI-enhanced MD simulation modeling. In the same spirit as the word 

―chemical simulation‖ being used as a synonym of quantum mechanical simulation in past 

decades, the term ―MD simulation‖ is used as a synonym of molecular-dynamical and stochastic-

procedural simulation in a broad sense. However, notable distinctions are made. First, protein 

folding pathways are predicted with a physics-based and MD-accelerated approach. In addition, 

AI-human hybrid protocols are introduced to accelerate the posttarget identification and in-depth 

biological activity elucidation of drug candidates. AI-enhanced molecular dynamics (MD) 

simulations have been largely confined to protein folding and drug binding tasks. All proposed 

methodologies fall into the category of AI-enhanced MD simulation and are described to aid 

understanding of the underlying MD and drug discovery methodology. In addition to existing 

target-structure-based drug design perspectives, a black-box AI-enhanced modeling perspective 

is introduced to accelerate the assessment and exploration of drug-like chemical entries and 

target structures by providing energy-profiles of chemical structures through direct physics-free 

energy-geometry characterizations. 

2. Background on Molecular Dynamics 

Molecular dynamics (MD) simulation is a non-static view that describes the spatio-temporal 

changes of molecular systems [1]. It is one of the most important methods to understand the 

molecular mechanism, whereas the tasks of MD include time integration for a solvent and/or a 
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solute system given their initial configurations and potential energy surface. In large-scale 

systems such as 30,000 atoms of the protein-ligand binding complex, MD is divided into steps: 

to model the classical MD with the Newton equations and force fields, to initialize the 

coordinates and velocities for the solute molecules, and to compute the force acting on the 

particles of interest for each time step. MD has important applications in drug finding, such as 

protein-ligand binding and unbinding, protein folding or unfolding, and large conformational 

transitions. Although powerful integration numerical methods have been extensively developed, 

predicting these complex processes in implicit solvent is still prohibitively expensive. 

The task of MD simulation for the protein-ligand binding dynamics is to simulate the time 

evolution of a large and complex biomolecular system of hundreds of thousands of interacting 

atoms and understand the conformational change of the system at a long timescale 

(milliseconds). Due to the limitations of computational resources, classical MD simulation of 

large biomolecular systems is usually performed with a large timestep (typically 1–4 fs) over 

hundreds of nanoseconds. During such a long integration, rapid motions that cannot be described 

by the force field would lead to the violation of energy conservation and introduction of spurious 

artifacts. To estimate the long-timescale dynamics, learning-based surrogates for numerical MD 

methods are desired. Hence, the essential of this task is to learn the harmonic dynamics 

conditioned on a sequence of the MD trajectory points. Recent advances in deep learning have 

shown promise to improve the predictive quality. Nevertheless, these methods either augment 

numerical solvers with neural networks or replace solvers at small time steps, and they all adopt 

a uniform timesteps for testing. [2][3][4] 

2.1. Fundamentals of Molecular Dynamics 

Molecular dynamics (MD) simulations offer visual insights of intermolecular interaction and 

time-resolved detailed information on protein folding, and binding with small organic molecules 

(ligands). These simulations have been used to rationalize the affinity and selectivity of drugs 

against targets and also in drug discovery. MD simulations are powerful tools to study 

biomolecular processes at nanoscale up to millisecond timescales, yet sampling in number of 

microseconds-to-milliseconds timescales remains a challenge due to limited computational 

power. Similar to experimental methods MD simulations need a priori setup of starting structure. 

For protein systems, static three-dimensional structure is available in PDB format and MD 

conditions can be parametrized with popular CHARMM, AMBER, OPLS, GROMOS force field 

libraries. In contrast, structure and interaction potential/force fields of most ligand molecules are 

unknown and hence dry ligand environments warrant further consideration. Development of 

accurate models of potential energy terms of protein-ligand binding and their optimal parameters 

is a longstanding objective in computational chemistry and drug design. Small organic 

molecules, or compounds, that binds to biomolecules, such as proteins or nucleic acids, 

performing stimulation with these compounds in water environment. There are 3D structures 

available in PubChem, but there is no guarantee that which form will set the binding 

conformation. MD simulations provide information beyond static structures since it describes the 

time-resolved motions of biomolecules. 

Protein-ligand binding free energy estimation with MD simulations based on molecular 

mechanical (MM) force fields. Most of current methods are inaccurate because computational 

pharmacology models potential energy functions without including solvation contribution in a 

proper manner [5]. Many of binding free energy estimation algorithms rely on free energy 

perturbation (FEP), thermodynamic integration (TI) and their variants, for which accurate 

estimation addresses selection, combination, and mapping of conformation-dependent energy 

terms with reference energy functions [6]. Poor parameterization of precise premiers is one of 

major constraints in MM force fields with a few exceptions. Handling dry ligand environment in 

trajectory navigation is another consideration. 
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2.2. Historical Development 

Simulations of molecular dynamics have been used since the late 1950s to address problems of 

molecular systems at atomic resolution. The Liverpool group has emphasized simple 

representations resulting in computations on microsecond time scales, addressing important 

processes such as protein folding and ligand binding [7]. With the advent of massively parallel 

systems, powerful molecular mechanic force fields have been developed and performance 

reached on the order of nanosecond simulations for up to a million atoms, heavy water 

biochemical solution, analyzed on a time frame of hundreds of nanoseconds to microseconds. 

Fine-grained representations of molecular interactions typically reduce complexity for 

computational gain in performance, but coarse-graining removes chemical specificities and is 

thus qualitatively more limited. Simplistic approaches, such as a simple shape fit or molecular 

docking based on an energy minimization algorithm, may be polluted by irrelevant local minima. 

On the other hand, biomolecular systems are typically characterized by a myriad of timescales 

(femtoseconds to seconds). MD simulations of atomic resolution allow representation of bonds, 

angles, torsions, van der Waals, and electrostatic calculations, in combination with a thermostat 

to fix temperature and a barostat for pressure coupling. Nonetheless, time steps of commonly 

considered potentials are limited to 1–3 fs, and currently executable times remain below a 

million times the time step. Hence, finest representation group motions are limited to motions of 

an average of 12 heavy atoms, and simple model coarse-graining may yield valid regions in 

conformational space, but remain qualitative for large biomolecular systems. Coarse-grained 

potentials replace friendly empirical force fields with less chemically relevant generic potentials, 

which may have convergence problems for large systems, may exhibit artificial properties, and 

for which bridging to atomistic models is challenging. [8][9][10] 

2.3. Applications in Biophysics 

In Biophysics, MD simulations have been used as a tool for studying the aerial properties of 

biomolecular systems. MD simulations of biomolecular systems involve the integration of 

Newton‘s equations of motion for the atoms of interest in order to sample their configurational 

phase space. Ideally, a configuration of just a few tens of water molecules, a few dozens of 

amino acids constituting proteins or nucleotides with explicit pH 7.4 buffer can already help 

capture unique molecular properties, however they become rapidly intractable for an MD 

simulation on regular computer systems. Recent efforts to improve the computational efficiency 

of MD simulations for large systems include a systematic approach to the numerical molecular 

mechanics and implementation of new algorithms on special architectures, such as the use of 

GPUs. These advances may be key in expanding MD simulations into practical tools for biology 

and drug development [11]. 

Molecular dynamics (MD) simulations are a powerful and versatile computational tool with 

multiple applications in biochemistry and pharmacology. Many studies have applied MD 

simulations to model drug binding to protein target systems or study the structural dynamics of 

drug targets, notably receptors and enzymes. MD simulations can also be used in a more 

computationally expensive approach of structure prediction from protein sequence, where they 

account for tertiary structure refinements and the more general modeling of protein chains, 

however the faster modeling methods are more widely used for this. MD simulations can recover 

consistent temperature and pressure, but to initial conditions not representative of biological 

processes, a number of ‗temperature jumps‘ can be taken as an attempt to return proteins to their 

native states through the application of heating cycles and restraint forces, or to obtain kinetic 

estimates of folding free energies by exploring multiple structural states. MD simulations can 

also be used and have been extensively applied as a component of protein design or 

identification of ligands for both large predictions of new protein and ligand sequences. 

[12][13][14] 
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3. Protein Folding Mechanisms 

Comparing Dynamic Simulations of Tumor-Associated Protein Mutations Methods for protein 

folding prediction studies have the longest history in the structure–prediction field. These 

methods are typically using a simple but computationally much more expensive approach: all-

atom dynamic simulation of hundreds of nanoseconds or even microseconds. Affinity prediction 

of protein–ligand systems has recently attracted increasing research interest among researchers in 

both industrial and academic labs [15]. The authors emphasize MD simulations as a universal 

approach to biomolecular modeling. Thus, they review both proteomics and drug discovery in 

molecular dynamics settings including the latest developments in the hardware, algorithms, and 

force-field refinement [16]. In the late 1980s and early 1990s, a few pioneering attempts had 

been made to apply all-atom MD simulations to protein folding studies. Despite this, all-atom 

simulations are rarely used for large-scale studies. 

Protein folding prediction from its sequence is a long-standing challenging problem in biology 

and biomedicine. The best exploitable knowledge about a protein is its sequence drawn from the 

―genetic treasure‖ and its 3D structure determined using expensive techniques. The mutation of 

sequence units, amino acid residues in proteins, or nucleobases in DNA or RNA is closely 

related to the start of life and the cause of many diseases. As such, understanding how a protein 

folds from its sequence or how mutations would affect its folding pathway or rate is not only an 

important fundamental question but is also practically useful for protein design or mutation-

based drug discovery. Similar questions hold for other biopolymers in genome science. 

3.1. The Folding Problem 

The protein folding problem asks how the linear sequence of amino acids folds into its unique 

3D conformation. Ultimately this protein conformation defines its biological function; thus, 

understanding the folding process is critical. Although scientists have known the sequence-to-

structure mapping for decades via X-ray crystallography and NMR, the dynamics of with which 

this mapping occurs is a more recent area of research. Extensive computational modelling has 

been useful in probing the dynamics of folding, but at atomistic resolution, such approaches are 

limited to ~1 ms in the best case and generally require weeks to months of compute-time for 

larger proteins. Phylogenetic approaches based on similar folds/domains and homology 

modelling have proven useful in predicting rough topology, but how these topologies are 

selected and refined remains unknown. On the other hand, many drug design strategies rely on 

the docking of candidate drugs with proteins in their experimentally characterized native 

conformation. Yet, the role of conformation selection in the non-trivial binding of candidates to 

'flat' protein binding energy landscapes has also received very little qualitative treatment [16]. 

These problems share similar complexities in energy landscape and algorithm design, making 

them suitable for the same general approach. 

Folding pathways of small to intermediate sized (60-100 residues) proteins have been 

successfully simulated in atomistic detail using a new Boolean energy function (the Protein 

Energy Function, PEF) that encodes the physics of protein folding and an efficient Monte Carlo 

algorithm that enables folding simulations to be run orders of magnitude faster than at present 

[17]. The Protein Energy Function is designed to select a single folded conformation for a given 

chain length of non-coded amino acids. In addition to its native state, it accommodates dummy 

amino acids, which must not bond, and thus allows for an ambitious folding pathway search 

algorithm, which groups pseudo-detailed Monte Carlo move types in energy 'move-sets' to 

generate coarse-grained Lattice Path Trees (LPTs) large enough to cover all reasonable folding 

pathways. Suitable intricate partitioning of moves based on astuteness of topology allows for the 

efficient generation of LPTs to which a newly devised simulated annealing-like recovery scheme 

is subsequently applied. Such an approach is particularly suitable for an extensive unified study 

of the Folding and Drug Binding Problems. One methodology is introduced and applied to the 

fold-discovery problem. Its applicability to the complex but generic Fold-and-Drift Problem is 
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also discussed. In the latter case, it is shown that small to intermediate sized proteins are 

entropically favoured in liquid water enclosures (a key condition for the origin of life). 

3.2. Kinetics of Protein Folding 

To describe the protein folding pathway, a computationally inexpensive and effective Markov 

model has been developed. The resolution of the Markov model is determined by the size of the 

coarse-grained model used. The design of the database ensures that it is body size invariant, so 

the approach can be used for any peptide length. To avoid discarding the CMF of wrong 

trajectories, it is included as equilibrium distributions. For all proteins examined, substitution 

values that were comparable to those generated through atomistic simulations and continuous 

time random walks have been demonstrated. 

The underlying theory of the model is described and how it can be applied to practical problems 

is demonstrated using several interesting cases, such as a tripeptide that folds within milliseconds 

and ―mini‖ proteins. For proteins larger than the current CG diameter, a modular parallel 

executable can be made available. In order to describe the kinetics of protein folding, it is first 

necessary to construct a peptide potential from a folding and unfolding trajectory. To achieve 

this, it is implemented as a coarse-grained momentum-based trajectory difference scheme to 

integrate MDS. By simulating time series of building blocks, flexible 3D protein motions can be 

modeled with a few degrees of freedom. 

Although rigorous MDS has succeeded in providing detailed atomic level trajectories of 

chemical systems, it has yet to be adapted to simulate the time-dependent stochastic processes of 

macromolecular folding. A few MDS studies on peptide folding and the applicability of time 

series prediction methods on stochastic trajectory data have been recently reported. Although it 

is crucial to know how to choose an appropriate discretization, previous methodologies are 

limited to very small proteins under special conditions. It was shown in the context of a practical 

folded protein that all-atom simulations and elastic network models yield quantitatively 

consistent folding time estimates. This gives a clear basis for estimating protein folding times. 

3.3. Experimental Techniques 

Molecular Dynamics (MD) simulations allow exploration of time-dependent motions of proteins 

at an atomic level. Key experiments are selected for further process. The MD simulations are 

performed using the following methodology to generate the trajectories in a deterministic way. 

Each protein system is placed in a cube water box and sodium/potassium ions are added/moved 

according to the charge requirements, which bring the system to physiological conditions. Then a 

conjugated gradient energy minimization is performed to eliminate steric clashes and carry out 

fitting of the initial protein structures into the water box. The solvated and equilibrated protein 

systems are subjected to 20ns MD simulations in explicit water model at 310K, with an 

integration time step of 2fs. The initial velocities of the NVE systems are assigned at random 

based on a Maxwell-Boltzmann distribution. The interaction cutoffs for all non-bonded 

interactions are set to 10Å. CHARMM atom types, parameters and force field are applied. The 

simulations are performed in periodic boundary conditions, controlled by constant volume 

(NVE) and constant temperature (NVT) ensembles using model potential and temperature 

coupling scheme. Starting frame, frequency of recording and running periods are determined in 

such manner that a total of 1ns trajectory with 550s frame interval is generated. The XY and Z 

coordinates of proteins in MD simulations provide effective monitoring of the protein structures 

and motions during folding that is necessary input for calculations. The employment of GOA 

typically results in selection of a native structure for protein enzymatic reaction in MD 

simulation. The CG approach infers a simplified AA representation to enhance the sampling in 

molecular motion. Discrete stochastic, Langevin dynamics and hybrid simulation approaches are 

applicable CG simulation schemes. [18][19][20] 



American Journal of Botany and Bioengineering                                              Volume: 2 | Number: 6 (2025) June                                                        7  

 

4. Drug Binding Prediction 

Molecular docking is a structure-based approach to predict how a drug binds to a protein. The 

docking process typically involves predicting the binding site, predicting the binding mode, and 

ranking the predicted binding modes. Molecules like peptides, drug-like probes, and natural 

products are major input types for protein docking. In most blind docking studies, ligands are 

assumed to be rigid. Continuous conformational space to avoid missing low-energy poses. 

Several molecular docking tools enable complementary conformational sampling methods, 

flexibility modeling techniques, and sophisticated scoring functions. Such developments and 

other advances in recently published open-source software significantly help drug discovery 

programs [21]. 

Drug discovery is an expensive process that ultimately leads to approved drugs for treating 

human diseases. An early phase of drug discovery is identifying strong binding candidates, 

which is usually done by high-throughput screening and molecular docking. Drug discovery is a 

costly and time-consuming process. Screening thousands to millions of compounds against a 

biomolecular target for texture and observation is an expensive and technically challenging 

process. Accurately predicting binding affinity and optimizing lead drugs before measuring 

binding are therefore desired. Accurate predictions are also valuable for drug repurposing and 

drug-protein interaction investigation [22]. 

Accurate predictions of active versus decoy classifications are necessary for cost-effective drug 

discovery. An ensemble docking method that generates large numbers of conformations for 

ligand-binding proteins has been shown to improve drug-binding predictions. Each conformation 

is docked and divided into PDBQT input files, run independently, and combined via machine 

learning algorithms. These predictions can also facilitate side effect analysis, drug repurposing, 

and drug design. Improving binding-pose predictions and obtaining conformational energy by 

running molecular dynamics simulations for all docked conformations using a multi-scale 

modeling approach. 

4.1. Importance of Drug Binding Studies 

Understanding protein binding is essential in drug screening experiments because it is 

intrinsically tied to protein structure/function; however, computational tools can predict protein 

binding, potentially making expensive molecular dynamics simulation unnecessary [22]. The use 

of machine learning has the potential to be a game-changer in this area since it can readily 

integrate various sources of data and hint at fundamentally interesting results. With the growth of 

data available from increasingly faster and cheaper hardware, focused efforts combining drug-

docking scoring programs with machine learning algorithms could have far-reaching benefits to 

drug networks across numerous areas of medicine. Very few studies to date have explored the 

integration of traditional docking methods into machine learning pipelines and trained models to 

accurately classify drug binding specificity. However, recent advances have been made in this 

area, establishing novel methods of sending docking scores into machine learning classifiers in 

channelized pipelines, which utilize properties of both hard data and predictions from 

computational methods. Thus, there is an opportunity to further develop these methods into 

powerful classifiers to accurately seek and understand pharmacological interactions. 

Drug development is a lengthy and costly process that is prone to massive failure rates due to 

several factors. This research emerges from a desire to intercalate advanced computational 

approaches early in the drug development pipeline, thus efficiently preventing detrimental 

binding interactions from appearing during resynthesis. The ability to make accurate 

computational predictions of drug binding could greatly improve the cost-effectiveness and 

safety of drug discovery and development. Toward this aim, this study introduces ensemble 

docking and other methods to integrate a range of additional biomedical data sources with 

machine learning algorithms trained to classify compounds as active or decoy for a given 

protein. Using an ensemble of multiple protein conformations will better represent an average of 
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potential binding sites for the docked compounds than a single conformation does. 

4.2. Techniques for Binding Prediction 

Recent approaches to improve protein-ligand docking and binding affinity prediction combine 

empirical scoring functions with carefully-parameterised physics-based scoring functions. 

Insights from a fundamental area of statistical physics have been mined to formulate 

complementary scoring schemes that provide valuable knowledge of both the overall quality of 

the ligand pose and also an estimate of the docking energy. Various descriptors, adopted as 

scoring functions for binding free energy prediction, rank-ligand poses based on topological 

properties of the 3D ligand-protein complexes produced by docking or sampling simulations 

together with electrostatic features of both the ligand and the protein [21]. This Bayesian 

approach leads significant improvements over the original knowledge-based methods but still 

employs a simple atom-atom potential that does not take into account the time evolution of the 

two particles in the complex. Apart from terms measuring contact distances, more complex 

scoring functions, arising from statistical mechanics principles as Markov models and made self-

consistent, have been developed. They yield reasonable estimates of the stability and fidelity of 

the ligand pose. 

Methods for predicting how a ligand binds to its target protein have become the most important 

application of computational chemistry in drug design. Binding is mediated by protein-ligand 

and solvent interactions, including solvation, crowding, and pH, and many of these renders 

accurate prediction of free energy and structure challenging. The difficulty of this problem, the 

critical role in drug discovery, the progress made to circumnavigate the hurdles, and a summary 

of it all at the end are discussed [5]. Several classes of calculation, beginning with elucidating 

near-native poses, are then theoretically reviewed, considering outcomes and limitations 

particularly with respect to accuracy, robustness, sample preparation, and execution time, 

especially when tested on blind prediction datasets. Finally, an overview of recent advances in 

molecular modelling with some perspective on future developments and initiatives is provided. 

4.3. Case Studies in Drug Discovery 

One of the most important applications of molecular dynamics simulations is in drug discovery, 

where it is used to predict how drug molecules bind to their protein targets [21]. Identifying 

possible protein ligand binding poses is an important step in determining the mechanism of 

action of a new drug candidate. VinaBio is a new molecular docking tool that enables AI-

enhanced blind docking of drug-sized ligands to proteins, in particular against flexible targets. It 

uses a fast multiple property scoring function, a coarse-grained global search, and refines the top 

hits using an all-atom energy model. The scoring of protein-ligand poses may be augmented by 

pre-trained and/or fine-tuned neural networks on prior examples of target-ligand pairs, 

facilitating transfer learning. Near-native pose retrieval benchmarks with popular conformational 

sampling, molecular mechanics scoring, and coarse-grained scoring methods demonstrate that 

VinaBio is competitive with existing methods. In five-dockings against three flexible targets, 

VinaBio achieves more than one near-native pose in the top 10 docked poses (1:1:2) and in the 

top 50 poses (1:2:2). The state-of-the-art is exceeded by adding AI-augmented scoring, with 

completely blind runs retrieving near-native poses for all three diverse targets. VinaBio is 

available for academic use as an open-source software product for Linux and Windows. 

Its ability to recover near-native binding poses and to dock a variety of diverse flexible protein 

targets makes VinaBio significant. As an open-source software tool compatible with a popular 

docking package, it opens the opportunity to carry out extra-sensory docking against challenging 

protein targets across an array of proteins, including membrane proteins and protein-protein 

complexes. For adherent targets, VinaBio could provide a complementary tool for advanced 

conformational sampling methods to screen a much wider range of leads. In addition, all-atom 

potential energy functions with trained weights specific to the target-ligand pair could enhance 

the accuracy of the refinement. 
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5. AI and Machine Learning in Molecular Dynamics 

Currently, a variety of machine learning (ML) models based on neural networks are gaining 

popularity within the MD development community. This focuses on the recent advance in 

synthetic & semi-synthetic ML-based force-field representations and their application to the 

modeling of protein folding. The selection is motivated by the growing interest in applying these 

models to study the kinetics of large structural transitions, with an emphasis on proteins. In 

addition, a variety of machine learning tools that have been used to analyze, condense, or filter 

MD trajectories are reviewed. Prominent examples of these methods are bottleneck identification 

on MD timescales, rigorous dimensionality reduction algorithms, and enhanced sampling 

algorithms. Though there is still an ongoing debate regarding the involvement of sidechain-

dominated or backbone-dominated events, the more general question: ―how are native topologies 

encoded in sequences?‖ is starting to be addressed with a variety of different ML approaches 

[23]. In addition to protein structure prediction, machine learning methods can help address other 

questions regarding protein dynamics. A related question is the applicability of domain 

knowledge. Physical models of folding consider, to good approximation, a single conserved 

Hamiltonian which includes a coarse-grained mean-field model of residues tessellating a 2D or 

3D lattice and moving according to self-diffusion equations. In contrast sampling distributions 

for a hard-to-tag protein structure, which is dominated by relevant slow variables ought to be 

simple and low dimensional, encompassing a reduced search space in a coarse-grained space. 

For instance, contact maps or phi and psi dihedral angles are possible choices. However, domain 

knowledge can bias to primitive choices and generally design choices for unsupervised learning 

representations have proved important. 

5.1. Overview of AI Techniques 

The advent of artificial intelligence (AI) has rapidly propelled characterization, design, and 

screening approaches in molecular discovery, allowing for an exponential increase in coverage 

of the chemical composition space [24]. ML and deep learning approaches have been developed 

to enable quantum chemistry scalable molecular property prediction. Such methods have been 

developed for the prediction of molecular properties. Furthermore, computational structure-based 

methodologies are available for the prediction of potency ranks and reactive phenotypes. In 

addition to novel construction, prediction approaches based on previously characterized drug-

like molecules and their corresponding protein targets have exploded in the past few years. These 

include molecular docking and molecular dynamics simulation enhanced and integrated 

approaches. These approaches benefit from parameter-free deep learning-based selection 

strategies and/or neural network flexible docking methodologies and from enhanced sampling or 

biased simulations based on deep learning-force fields. 

Despite the enhanced efficiency of multiple docking interfaces, success in retrieving the correct 

poses among the thousands of clusters computed for each pair remains rare. Until now, 

experimental characterization had been the bottleneck in assessing high-throughput molecular 

discovery studies. There also remain blind spots in predicting quantitative properties, such as 

binding and solvation free energies with quantitative benchmarks for applications in lead 

optimization. This rapidly growing field of AI-based molecular discovery has distinct challenges 

and blind spots when compared to the successfully matured fields of traditional AI in natural 

language and in image processing. One of the most fundamentally challenging problems is the 

poor representation of molecules in a way that encodes their intricacies and in a manner that 

designs/deep nets can conveniently use. Another challenge is the incompleteness and bias of the 

databases because effects well beyond the static properties are important for molecular 

interactions. 

5.2. Integration of AI with Molecular Dynamics 

Despite the success of AI in protein structure prediction, elucidating protein structure-function 

relationships from structural dynamics remains unsolved. Molecular dynamics simulation, a 
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computational method to study physical movements of atoms and molecules via numerical 

approximation, is a powerful tool to investigate protein dynamics. By solving Newton‘s equation 

of motion, rich information of protein dynamics, such as binding-unbinding, folding, 

conformational transition, and allostery, can be estimated. However, molecular dynamics 

simulation cannot be used in vitro due to challenges like biological relevance and timescale 

limitations. It is high cost such that microstructural properties are often integrated or 

approximated. The development of and access to customizing molecular dynamics simulations 

for a wider audience is still a fundamental challenge in biology. 

To bridge this gap, accelerated molecular dynamics simulations have been developed to enhance 

the rates of acceptable conformational transitions by reducing the energy barriers of rare events. 

In the past decades, enhanced sampling techniques have been utilized to access long timescale 

information directly on atomic representation, including replica exchange molecular dynamics, 

temperature accelerated molecular dynamics simulations, well-tempered metadynamics, and 

many more. However, these sampling approaches require comprehensive parameter tunings, 

including the temperature ranges of the run, amount of replica pools, collective coordinates and 

bias strengths, which are time-consuming and nontrivial. The development of the first multi-

grained physics-informed approach designed to perform enhanced molecular dynamics 

simulations in protein-ligand binding dynamics is proposed. A PDE-based method to model 

protein-ligand binding molecular dynamics simulations is developed. To achieve real-time 

simulations with adaptive spatial-temporal discretizations, a time balancing strategy is devised 

such that classic meaning physics would be incorporated. As numerical schemes are directly 

constructed from meshless solutions, the framework achieves high speedup and accuracy via 

error retuned recovery training. A ForwardImpact Orientation Embedder that adopts the 

interference of optical vectors is presented to derive a generalized parametric embedding. The 

geometric embedding is guaranteed to evolve consistently and significantly improves the 

reconstruction accuracy and numerical stability of molecular dynamics trajectories, achievable 

on binding systems with diverse conformational features. [25][26][27] 

5.3. Advantages of AI-Enhanced Simulations 

AI-enhanced molecular dynamics (MD) simulations, using advanced machine learning (ML) 

tools to accelerate classical Abbe–Newtonian mechanical MD, are emerging methods to study 

protein folding and drug binding dynamics. In this new research field, many interesting and 

challenging problems require either fundamental or applied research on ML methodology. For 

example, how to better discover and model diverse potential energy surfaces (PES) for various 

biomolecular systems with diverse scales, or how to design a better feature representation of the 

molecule that incorporates both geometry- and physics-based information? In particular, starting 

from scratch, it can benchmark and correlate to indirect molecular properties derived from the 

trajectories. To inspect individual trajectories, it can struggle with absurd speeds or costs of 

visualization tools. To build commonly used databases for general generalizations, it can be 

difficult to create a better and more comprehensive benchmark dataset for multi-scale biology. 

For AI-enhanced MD simulations of protein folding and drug binding, due to the biological 

importance, diversity, difficulty, and industrial demand, geometry/physics-based model 

discovery, robust and generalizable potential energy surface (PES) representation and 

conformers generation, adaptive descriptor, and coarse-graining are important areas that need 

either fundamental research or a deeper investigation on the application of existing ML methods. 

One preliminary AI-enhanced MD method on protein-ligand docking with the coarse-grained 

MD and a newly developed dynamic reduced representation model proved the high potential of 

AI models to simulate protein-ligand binding dynamics at multiple time scales and provided the 

foundations for further study [1]. 

Simulations empower a molecular-level view of binding processes, as generic MD methods can 

study biomolecular systems at atomic resolution. However, a time scale disparity between the 

MD model and practical binding dynamics remains. AI-enhanced MD methods are needed to 
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accelerate simulations while recapturing biophysical accuracy. AI-enhanced sampling methods 

are naturally applicable as current MD simulations either sample equilibrium distributions or 

attempt to reach equilibrium through equilibration, leading to unknown, unrealistic 

conformations. AI-enhanced potential energy surface methods model this discrepancy explicitly, 

predicting pairs of forces derived from molecular configurations while minimizing cumulative 

errors in accelerated MD trajectory simulations [28]. 

6. Methodology 

Accelerated protein structure prediction has become an active area of research with 

advancements in technique development, algorithm design, and tool building. However, all 

existing methods still need to address some basic challenges that arise from the relatively low 

signal-to-noise ratio in continuous-state protein sampling spaces. Discontinuous moves and 

MCDSMs have gained popularity for sampling through the relative motion between discrete 

rigid domains. This naturally leads to designing normal mode analysis. However, the rigorous 

implementation of this framework promptly gets complicated for more flexible and complex 

motions. To some extent, energy discretization helps to improve conformational sampling. 

Augmented MCDSMs also prevent traps that are too deep to be overcome. Instead of 

discretizing the whole move search space, applying sophistication to the move acceptance 

criterion can improve both direct sampling and MCDSM methods. 

Essentially, all existing methodologies are complementary to each other. Therefore, it is desired 

to combine and integrate multiple methods so that their strengths can be fully assessed. Here, 

large scale parallelization has been applied to make all methods feasible on massively parallel 

machines. Among all mentioned methods, MCDSMs are fewer in numbers, and still at their early 

development stage compared to potential energy based methods. Therefore, they are considered 

the techniques to form a new realization of axial motion with the angular Gaussian likelihood 

centered at a selected imaginary frame. By using more order parameters, a member of the axial 

motion can be sampled by discovering more rotatable bonds in the scaffoldized cycle [6]. Multi-

domain proteins bind to their ligands through a complex protocol that involves conformational 

changes during docking. MCDSMs can consider labeling the ligand as flexible and perturb the 

molecule for protein-ligand complex generation. 

Inter-protein rigid body motions can be handled as the large-scale side-chain motion. Predictions 

of protein structures are enriched with millions of with each around 64 residues [5]. The target 

structures are from the data bank of NMR structures of the membrane-peptide systems. All 

structures are in off-equilibrium states namely, environmental perturbation, mutation, or miss-

folded, different from NMR states. Accelerated molecular dynamics simulation is carried out for 

the 12.58 microsecond timescale and normalized to 12k frames. With 36 sparsest linearly 

independent descriptors to pre-screen candidates, the sparse decomposition figure-of-merit 

measures each candidate's geometry and physicochemical fitness. With the GP model to suggest 

promising moves, the active learning to make lab subset grows until exhaustion is attained. The 

benchmarking, exploratory data analysis, and analysis are developed to extract guides from the 

fingerprint space and provide the recoupling strategy. 

6.1. Simulation Setup 

In this work, we focus on the MD simulation protocols of protein folding and drug binding. MD 

simulation box setups include the following key steps. The capping of truncation residues, e.g. 

the last residue of 18-residue fragment 0th model with CH3 instead of COO–, was ensured 

during initial model setup. A rectangular nanoparticle cavity with truncation dependence in 

width and length was input for simplified confining effects in the 8a to 18a systems. To achieve 

well-equilibrated systems, the running procedure of predefined protocols with specific 

parameters generating virtually all structural outputs for dynamic analysis was programmed for 

different simulation times and pairs of GPUs to significantly reduce waiting time. 
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6.2. Data Collection and Analysis 

Most of the MD simulations in the recent study were performed on the PACE supercomputer 

built with 1040 NVIDIA V100 Tensor Core GPUs hosted at the University of Utah center for 

high performance computing. Simulations were set up using the xLEaP module within the 

AmberTools suite of programs. The crystallographic structure of each conformational state in 

PDB format was converted to the required input files. Extended ensemble simulations were run, 

consisting of cooling and heated MD and enhanced sampling windowed MD. For both cooling 

and heated MD at each temperature, setup input files for use were prepared in Leap and files 

specifying the MD simulation were created using CMake and the user's local version of Amber. 

The used protocol consisted of an explicit-solvent rested heated phase, one thermally 

equilibrated MD run at target T and pressure, and an optional phase of faster dynamics. The 

heated phase was run for 4.5 ns at a rate of 50 fs after heating explicitly solvated proteins to the 

target T [7]. In a previous study, both an extended ensemble cooling protocol and one run MD 

protocol were shown to outperform conventional 1 µs long 286 ns DC-MD run separately for the 

same length simulations. Simulations were finalized with optional phases of accelerated 

langevin-dynamics (L-D) simulations run at rates of 2.305 ns–1 using target τD values of 1.0 ps 

[29], or, alternatively, a series of rapid MD runs using a 0.5 fs time step that were initiated using 

output files from MD-L0, and subsequently run for input varying number of 10 units, selected 

such that the final simulations finalized supercomputer simulations at about the same time. 

Finally, snapshots from the last steps of each L-D run were selected as a training set for 

inference MD training and off-the-shelf use. Internally, these energies were made directly 

comparable by rescaling per-atom output energies as the fraction of the maximum energy time 

step. The default splitting used was: 0.01% for all near gases, 0.85% for both ice-like and near-

loop states, and 0.2% for B-factors. Optionally, energy cutoffs were encoded per file, allowing 

residues with zero energies to be retained. Potentially estimated energy of: 208440, 93160, 

267120 for B-factors of 0225, 0280, and 0720 respectively. The probabilities computed as 

similar distributions were normalized with respect to direct pressures and compared according to 

their extensibility on a residue-by-residue basis and across the selected time points. Then the 

amount of pressure contribution, or sensitivity, of the complete simulation across the time points, 

(P(t)), was determined by summing the pressure contribution probability density for each residue 

across the total time points. Subsequently, increased deliverables were identified as subsets of 

residues with increasingly high contributions to the total pressure. The correlation between 

charges in fixed chain beads on a residue by residue basis was also computed for native 

conformations. 

6.3. Model Training and Validation 

The docking approach must be optimized for a particular protein target and drug database. 

Details of all the parameters for Glide and Desmond are included in the methods for 

reproducibility. Once the best docking approach is established, the model can be implemented 

into a machine learning framework for training and validation. Positive and negative training 

examples were generated by docking ligands to protein targets with known structures from the 

protein database. Output features are generated from the ligand residue-based energy scores. A 

simple bagging random forest classifier was used for training, and prediction scores were 

averaged from multiple bags. Diverse positive and negative training examples must be selected 

to avoid model overfitting. A minimum score of 1 was established initially to include any 

predictions. The range of binding score features must also be standardized for the model to 

interpret the values correctly. The final model prediction result is a single probability between 0 

and 1 that indicates the likelihood of a given exp/comp pair being active [22]. 

The machine learning model was directly trained based on docking output features. Positive and 

negative training examples were generated by docking active ligands to proteins used in previous 

projects and to decoy compounds from the database. With the docking software, rigid protein 

docking was first carried out and binding event energy features were output, with a single 
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positive training example compared against thousands of decoy ones. Multiple features in the 

form of bagging scores from multiple rounds of training were utilized to reduce overfitting. A 

final model was produced, illustrating the predicted probability of the active compound for one 

protein target only. A degree of odds was calculated using the log ratio of probability values to 

assess how significant a prediction score is (i.e., predicting high likelihood of active vs. low 

likelihood). The results indicated that directly training the model based on docking output 

features may be reasonable. However, the poor generalizability suggested further optimization of 

both protein and ligand databases. 

7. Results 

Protein Molecular Dynamics (MD) simulations provide nearly atomic-scale versatile 

representations of folding mechanisms, ligand binding pathways and enzymatic activity 

predictions of biomolecular systems [7]. One hurdle that limits obtaining atomistic insight into 

the biomolecular system with MD simulation is time-scale over which processes of interest 

occur. The time over which MD simulations are currently feasible with the available computer 

power is typically of the order of a microsecond. However, variants of MD simulations localized 

or coarse grained potentially allow modelling systems on even longer time scales. State-of-the-

art methods exist for viewing protein structures at the microsecond and even millisecond time 

scale, yet these approaches cannot provide information on molecular motion because the 

underlying information is averaged out. It has been demonstrated that large-scale ensemble 

description might capture functional motion much better than static pictures. Ensemble docking 

is a straightforward approach based on a combination of large-scale protein structure generation 

algorithms with the standard docking techniques [22]. As docking runs on multiple structures 

from an ensemble, the results have been demonstrated to provide a more accurate predictor for 

which regions of the protein might be responsible for ligand binding. 

Density-generated based on the results of docking runs can be used to assign a probability of the 

presence of the ligand in the protein pocket. Ensemble docking allows considering the diversity 

of the protein structure and improves the results, particularly in the classification tasks, which are 

just what is needed for an accurate biological model. Protein structure is an integral part of 

protein function wherein the static structure is evolved with time by a complex set of motions 

bringing important areas to close proximity, making drug discovery a challenging process 

involving multiple physical and chemical interactions at diverse spatial and temporal scales. 

Although static representation of protein-ligand interactions is helpful, captured by molecular 

docking methods, it often fails in correctly predicting which of thousands of drug candidates will 

be active. Protein structure fluctuates constantly with many motions occurring on the 

picoseconds to hundreds of microseconds time scale. Studies have shown that a more correct 

description of protein-ligand interaction from different protein conformations indeed enhances 

the accuracy of predicting binding activity. However, the task of useful ensemble selection and 

minimal conformational redundancy is non-trivial. 

7.1. Protein Folding Simulations 

Molecular dynamics (MD) simulations, which can dynamically characterize protein folding 

pathways, have become a powerful and effective tool for understanding protein folding 

mechanisms [15]. Recent developments in enhanced sampling methods and high-performance 

computer architectures have allowed us to perform millisecond-level all-atom MD simulations. 

The trajectories produced by these simulations offer abundant but complex information on the 

temporal evolution of proteins, which presents larger challenges in data extraction and 

understanding than conventional approaches. Single-feature-based and two-dimensional features 

have been widely employed. The development of deep learning representation learning 

techniques has been accelerating the research breakthroughs on protein dynamics. In this section, 

the recent advances in AI-enhanced MD simulations for protein folding simulations and the 

analysis of protein folding pathways using MD simulations are highlighted. First, MD 
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simulations for investigating protein folding mechanism and pathways are introduced. These 

examples cover the protein G, α-spectrin SH3, and villin headpiece, which fold via different 

mechanisms at different timescales. Then the analysis of protein folding pathways is presented. 

The application of AI techniques to uniformly analyze and evaluate MD simulation in protein 

folds are emphasized. Molecular dynamics (MD) simulations with atomistic detail can simulate 

the folding pathways of proteins. The two-state model is widely accepted for small globular 

proteins folding, in which the native state structure forms before the cooperative process. There 

is growing evidence that a pre-formed structure is less likely to be the native state for natively 

disordered proteins. However, MD simulations of folding have typically limited assistance in 

interpreting the insights due to the enormous configurational complexity. A conformational 

ensemble generation method based on local structures is proposed to characterize the folding 

mechanism of unbiased MD simulations, which can be generally employed for studying the 

folding of arbitrary proteins. The folding of a globular protein, protein G, in water is simulated 

with biased MD simulations, resulting in independent folded models. The folding mechanism is 

characterized and visualized automatically via essential dynamics methodology. Three discrete 

intermediate states with distinct topologies along the folding pathway of protein G are identified. 

The folding mechanism is proposed to follow a nucleation-growth mechanism involving the 

formation of a hydrophobic core that collapses most residues surrounding the hydrophobic core. 

The developed method can also be generally adopted for analyzing or visualizing the MD 

simulations of arbitrary proteins. 

7.2. Drug Binding Affinity Predictions 

Incorporating Protein Dynamics Through Ensemble Docking in Machine Learning Models to 

Predict Drug Binding Drug discovery is an expensive, lengthy, and sometimes dangerous 

process [22]. The ability to make accurate computational predictions of drug binding would 

greatly improve the cost-effectiveness and safety of drug discovery and development. This study 

incorporates ensemble docking, with additional biomedical data sources and machine learning 

algorithms to improve the prediction of drug binding. We found that we can greatly increase the 

classification accuracy of an active vs a decoy compound using these methods over docking 

scores alone. The best results seen here come from having an individual protein conformation 

that produces binding features that correlate well with the active vs. decoy classification. The 

ability to confidently make accurate predictions on drug binding would allow for computational 

polypharmacological networks with insights into side-effect prediction, drug-repurposing, and 

drug efficacy. Machine learning is currently being used to advance many scientific disciplines, 

including drug binding predictions, and shows promise in increasing accuracy enough to make 

reliable polypharmacological predictions. Components of docking scoring functions can be used 

as features in a machine learning model to greatly improve the accuracy of identifying active 

compounds in models specific for one protein. Molecular flexibility can contribute to a favorable 

change in free energy of binding. Protein-ligand complexes undergo a wide range of motions. 

Molecular docking is an efficient computational method that predicts how and how well a drug 

will bind to a protein. Rapid, Accurate, Precise and Reproducible Binding Affinity Calculations 

using Ensembles of Molecular Dynamics Simulations Accurate predictions of binding affinities 

for protein-ligand (drug) systems are important in the fields of drug discovery, bioinformatics 

and systems biology [30]. Although model-drug interaction scoring functions have been 

developed, they are generally found to be too simplistic, requiring considerable empirical 

adjustment. Ensemble of molecular dynamics (MD) simulations are finding increasing need in 

the community using multiple simulations to estimate converged and statistically sound free 

energy differences. As a non-equilibrium approach, using path deviations from equilibrium can 

provide detailed accurate estimations of free energy changes through the fundamental physical 

law: FLT. Using ensembles of MD trajectories, we present a family of FEP and TI methods that 

can accurately, precisely and reproducibly estimate binding affinities that span several orders of 

magnitude. 
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7.3. Comparison with Traditional Methods 

Molecular simulation methods have become a key computational approach for drug design 

projects due to their predictive capabilities; however, the accuracy of free energy calculations 

depends heavily on the methods used to generate both the protein-ligand complexes and the 

ensembles used in the calculations. For binding affinity calculations, it is important to examine 

the ability of a method to reliably generate correct protein-ligand complexes, especially for drug 

design projects where an assessed method is used to model a large set of complexes. The system 

and accuracy of molecular dynamics (MD) simulations for building an extensive ensemble of 

conformations for free energy calculations are also examined. Overall, a hybrid protocol that 

combines molecular docking and MD simulations with implicit solvent models and the 

Generalized Born method with molecular volume-based correction is provided for accurate and 

efficient binding affinity calculations. It is applied to a benchmark set of ten diverse protein-

ligand complexes extracted from the PDBbind dataset, and the computed binding affinities 

correlate well with the experimental data [31]. For drug design projects where performance and 

efficiency are important when screening a large number of protein-ligand complexes, it is crucial 

to choose a reliable and efficient protocol. Various approaches to calculate the binding affinities 

of protein-ligand complexes in silico and the past ten years‘ developments of MD simulations 

coupled with implicit solvent models in this study are reviewed. The performances of various 

implicit solvent models and MD protocols, including a newly developed protocol with efficient 

simulations using an eighth-order leapfrog integrator, low-lag time normal mode analysis, 

optimized time step and temperature, and an implicit solvent model with an added correction 

term, are analyzed on three benchmarking sets of protein-ligand complexes [5]. Building 

accurate structures of protein-ligand complexes is the essential and most important step in the 

binding affinity calculations. During a drug design effort, it is important to consider structural 

modeling approaches with the different degrees of complexity and their analysis methods, 

including both implicit solvent models and continuum solvent models. The newest developments 

improve the accuracy of both docking and MD simulations with implicit solvent models. 

8. Discussion 

Recent advances in computational methods have made significant contributions to the 

understanding of protein folding mechanisms and the prediction of protein-ligand interactions. 

These efforts highlight the importance of each bioinformatics step and demonstrate how AI can 

enhance the quality of molecular dynamics simulations when applied holistically. Insights 

obtained with state-of-the-art physics-based models opened new questions on protein-DNA 

interactions and the search of novel G-protein coupled receptor drugs. 

A major benefit of using MD simulation, as opposed to static docking, is its capacity to explore 

normally inaccessible regions of the conformational space. For example, by simulating DsbA in 

an explicit membrane environment, the temporal dynamics of the thiol-disulfide exchange 

reaction when interacting with its substrates were elucidated and later supported by kinetic 

experiments. Similarly, protease FES did not exhibit the expected conformational switch 

believed to be responsible for the allosteric mechanism of inhibition. 

In a collaboration, a systematic evaluation of conformational sampling methods for full-length 

GPCR targets is presented. Special emphasis is given to the essential role played by prior 

screening approaches in mitigating the dimensionality of the search, either on the number of 

coarsened conformations analyzed in the learning stage or on a lower number of feasible 

representatives mainly involved in the prediction of pharmacophores. State-of-the-art methods 

including the first application of a quantum physics-based approach and attempts to employ 

multiple graphics cards are also described. 

These methods are subject to evolving implementations and application together with ML 

algorithms aiming at enhancing either sampling or scoring of conformation-ligand pairs. In 

addition to original cross-computational-method efforts demonstrating the versatility of MD 
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application, MD has been included as the state-of-the-art simulation method by comparison with 

less physically based approaches. The iterative training of ML algorithms with additional MD 

trajectories to cover original blind test sets, as well as to recover the lost specificity of scoring 

functions were valuable additions. 

8.1. Interpretation of Results 

This method enables one to achieve a highly folded structure from an unfolded one and involves 

two aspects: deciding which contacts to form and evaluating the local and global structures 

formed. Given that there are many more possibilities for contacts than there are input sequences 

this is not merely a question of doing a bruteforce search. For any contact pair not buried in a 

protein core there are competing factors affecting the free energy change for its formation. In 

addition to the stabilizing factors such as ionic and polar interactions, desolvation costs and lost 

entropy must be considered. It was shown that neural networks can indeed assign accurate 

physical properties to interatomic potentials and can incorporate all classical forcefield models 

by the appropriate choice of input. AF2 is much more than an alternative molecular mechanics 

solution to the problem of protein folding. Although it is able to achieve a prediction that is 

much better than random it is likely that its performance relative to the best models will decline 

with genuinely difficult cases [32]. The use of AI has also raised theoretical concerns about its 

underlying basis. This includes concerns that the ‗black box‘ nature of the models obscures their 

physical basis. Assessment of the input data and its impacts on the predictions is essential for the 

continued successful development of AI. Also, the role of prior assumptions in model training 

needs to be addressed. These raise questions about the nature/scope of knowledge that can be 

incorporated into the method and what limitations this might impose. On a practical level the 

rapid development of methods which provided previously unrevealed insight into the nature of 

folded proteins has once again demonstrated how each advance raises new challenges for the 

field. On a practical level models will be needed to evolve with the continuing rapid 

developments in experimental detect methodologies [7]. 

8.2. Implications for Drug Design 

The adoption of AI-enhanced molecular dynamics (MD) simulations for protein folding and drug 

binding prediction allows for the rational design of new proteins via new scoring functions that 

combine both physics-based and deep-learning approaches. The MD simulations not only 

provide near-native folding of proteins but also give insights into the drug-binding mechanism 

when the ligand-protein interaction potential is introduced in the simulations. The MD 

simulations rapidly generate pseudo-TEM and triplet states of the protein. As a proof of concept, 

with only a few hundred nanoseconds of continuous MD simulation, the pose sampling method 

is designed to predict protein-drug binding poses. It samples pocket conformations, following 

physical protein side-chain rearrangements, explicitly including ligand polarizability through 

improved DLPNO-MP2 calculations, leading to low-drug-binding-affinity false positives 

emerging in rigid percentiles (~1% Titanic-like positives), and detecting known false positives in 

the fast fold-and-dock classification. In addition to drug-binding pose prediction, the deep-

learning approach can be extended to predict complex free energy difference/scores (ΔΔG) and 

accelerated MD simulations considering single- or multi-GPUs. 

Assessing the formation of biologically relevant protein-drug-bound states remains a challenging 

infringement in silico drug design, as many targets relate to larger proteins. Thorough AL-CTD, 

ML-MD, and MD calculations were conducted to explore the interaction residues, states, and 

mechanisms of the Gcq-pDE1-GCAP1-Np+/Gu GFS. The MD simulation of the GFS complexes 

provides dynamical insight into ligand regulation of pDE1 at the isoform level. However, AI-

enhanced MD simulations have yet to be adapted for larger proteins using compositional 

representation alteration. Highly heterogeneous potential hits were detected in silico using 

FastPet. Accurate DL-MD models provide 12.0μs MD samples, key to comprehending the 

structural basis of pDE1 ligand regulation. AI-enhanced MD simulations revealed the pDE1-Gc 
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α-nMAMP structures and their mode of action with high sensitivity. Although t-PSMDs enable 

fast identification of initial structures for larger protein complexes, future AI-enhanced MD 

simulations are necessary. These models and methods can assist in discovering novel small DRs 

that have been missed and failing to bind potentially effective drugs disposed of by traditional 

methods [11]. 

8.3. Limitations and Challenges 

There are several limitations associated with molecular dynamics-based approaches for protein 

folding and drug binding prediction. While molecular dynamics simulations can be accelerated 

through various means, such methods cannot speed up force calculation, which is the main 

bottleneck of the treatment of explicit solvent atomic details. In most cases, improved matching 

performance will be obtained using larger sampling. However, the cost of computing force and 

energy is dramatically increased with the increase of MP, and therefore, given limited 

computational resources, one cannot simply sample a larger MP when applying force or energy-

based molecular dynamics simulations. Most existing deep learning-based methods improve 

either PE-based scoring function or speed up implicit solvent molecular dynamics simulations, 

while very few works enhance the computational efficiency of explicit solvent simulations with 

large sampling ability, addressing the inherent limitations showed previously [5]. 

The prediction of protein folding and drug binding sites is a significant challenge in the 

computational biomolecular community. The folding of all-atom proteins from knowledge-free 

starting conformations and the de novo prediction of protein-ligand binding poses a deep 

learning challenge. Methods for predicting both protein folding and binding based on deep 

learning-accelerated molecular dynamics simulation are presented. A unified framework based 

on deep learning-potential energy force fields predicting the entire force field and fast force 

extraction are proposed. A de novo protein folding MD simulation with a folding time of over 

five microseconds is attained. Deep learning-based sampling approaches are trained on diverse 

protein structures, allowing for the fast prediction of protein binding pose affinity with the aid of 

docking pre-alignment [28]. A few accelerators are designed to speed up energy and force 

calculation for protein-ligand scoring functions. However, these types of approaches incur 

excessive expense or limitations in terms of command or structure type. 

9. Future Directions 

The post-translational modifications of proteins lead to the emergence of conformational states 

in proteins, which forms the basis of function of these proteins. Natively unfolded proteins are an 

important class of proteins which are known for their roles in cellular processes like signal 

transduction, gene regulation and protein-protein interactions. Formulations for protein folding 

simulators to allow identification of an optimal binding pose had to be explored and studied in 

detail. However, a significant drawback in this approach is the requirement of a large number of 

computational resources and time. Another use case that is being explored is prediction of 

affinity of small molecules. In this domain, AI/ML techniques for prediction of protein folding 

and drug binding/affinity can be explored. 

A refinement of existing MD packages with ML techniques like Graph Convolutional Networks 

for protein structure prediction can be formulated. The system preparation, run time MD and 

refinement of PDB can be explored. For drug binding prediction, attacks on conformational 

flexibility have been outlined but other approaches can also be tested. If a binding pocket is 

available, identification of the receptor and sampling of ligand conformation is key to allow 

identification of binding pose. A knowledge based approach to predict the binding pose with 

additional refinement by MD can be tested using small molecules. The possibility of augmenting 

an existing MD engine to allow sampling of degrees of freedom other than torsional flexibility is 

also a potentially interesting challenge [28]. The large Variety of molecular building blocks can 

in principle be exploited for scaffold regression, scaffold-hopping or FBDD application. 
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Novel combinations of generative approaches with knowledge based ones can be explored. 

These typically address a limited number of fragments or binding scaffold with specific 

molecular properties but new development on identification of low energy well defined loops 

can be formulated. Expected applications include prediction of binding poses for several classes 

of targets like kinases, GPCRs and other relevant targets like proteases. Predicting affinity of 

small molecules is highly relevant to on-going collaboration efforts with pharma. Novel ways of 

using differential access to consider entropy change upon binding can improve the prediction. 

One successful way of accounting for sampling artifacts in proximity of the binding pocket is the 

use of machine learning approaches using the results from dedicated MD runs as training sets 

[11]. 

9.1. Advancements in AI Techniques 

DeepMind's AlphaFold is one of the most ambitious AI projects in molecular discovery, and it 

accurately predicts protein folding, requiring the understanding of structural biology and 

biophysics. AlphaFold successfully made high-accuracy predictions for the 2021 CASP14 

competition, and its prediction files are now available on the AlphaFold Protein Structure 

Database. Some important aspects about AI prediction of protein folding which are at least 

equally challenging as prediction technology have been overlooked. Protein sequences may fold 

into multiple conformers. Unless focusing on one specific structure, structure prediction from 

protein sequence data is likely to produce a wide variety of models. The most accurate prediction 

might not be the best model because it could be much closer to a local state rather than a global 

one. Furthermore, predictions are likely limited to certain categories of proteins which have 

naturally evolved in the organism, and again, the predicted model might be a poor one. 

AlphaFold's predictions for harder targets with higher Cα TM scores were found to cluster in 

both global and local sense, probably because of evolutionary stabilities. The CASP14 

assessment also indicated that AlphaFold predictions had worse agreement than experimentally 

solved structures. However, quality and accuracy are a gray area in structure prediction, 

representing a major challenge in structure-function understanding for a long time [24]. 

Improving the understanding and interpretation of protein structure function relationships from a 

structure prediction/modeling perspective is a longer-term goal, which requires systematic 

studies of system dynamics and classification. A more practical question is whether satisfactory 

prediction of drug-binding pockets, which is even more challenging than that of protein 

structure, can be performed based on some of the predicted structures conformations. 

Development of docking technology based on molecular mechanics or physics was another 

promise over biological explorations of drug-discovery screening in silico nine years earlier, but 

still progress appears piecemeal. Prediction of drug-protein interactions, which also take protein 

structure and flexibility into account during simulations, is an active area of work that may be 

many years away from routine applicability. The current advancement of computing power and 

data science enter the field of protein-ligand docking predictions to explore new opportunities. 

9.2. Potential Applications in Other Fields 

The methodology developed to enhance the precision of the protein folding simulations and to 

make them applicable to larger protein structures can be extrapolated to other general-purpose 

molecular dynamics simulation programs. As a contemporary version of the original Langevin-

like dynamics, the self-consistent Langevin dynamics that simulate a conditional distribution 

increase the timescale gap in time scales of dynamic motions (i.e. fast movements that are 

modeled on a quantum mechanical level and slow movements modeled in the Brownian fashion) 

while ramping up the autocorrelation time. In turn, this enhancement can be generalized to many 

other computational simulation methods used to explore different timescales of other systems. In 

particular, this application can be used to extrapolate the local motion of non-essential residues 

from oedoliracetam-protein molecular dynamics simulations to drug-binding predictions of 

peptides and proteins that adopt a complete different conformation in a nanostar and a 
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disentangled state. Being inherently pliable molecules with inter-molecular flexibility in a multi-

layer inhomogeneous gel, the testing of the methodology can also be pursued for 

polysaccharides, lipid surfaces, and metals, among others [11]. 

9.3. Long-term Goals for Research 

For the near term, molecular dynamics simulations (MD) currently using implicit solvent force 

fields on computer hardware based on application specific integrated circuits (ASICs) are being 

deployed 24/7 for the medically relevant systems indicated above [33]. For long time scales 

(e.g., milliseconds to days) and systems larger than accessible on conventional CPU-based 

hardware, flows of biomolecular simulation (observed on timescales of seconds) from initial 

simulations evaluating candidate structures and conformations through scoring and retuning 

optimizations will be carried out as well. As interactions are identified using the methods 

described in 3 and 4, separate ligand MD simulations to predict induced fit evolution of ligand 

and target protein conformations and prospective docking and scoring will follow, furnishing 

additional targets for direct investigation. A hybrid deterministic and probabilistic approach to 

design molecules to bind macromolecule drug targets will also be pursued. Probabilistic packing 

predictions are essential in order to eliminate factors irrelevant to binding affinity. A 

probabilistic function and geometric background for algorithms producing high quality packing 

conformations will be described. On the other hand, a major challenge to the FD-OB-RF design 

strategy applied to small-molecule drug development are de novo design of small-molecule 

bioactivity mechanisms and associated conformations or alternative conformations that may 

become bioactive only under relevant physiological or cellular conditions. Some recent advances 

towards addressing this challenge will be outlined, particularly the unbound version of an 

accurate scoring function that can also be used in drug development efforts for de novo design. 

In summary, the ultimate aim of this highly interdisciplinary effort is to apply MD and ligand 

binding prediction technology to human health relevant targets. 

10. Conclusion 

Molecular dynamics (MD) simulations have shown to be powerful tools for studying 

biomolecules at the atomic level and providing complementary information to experiments in 

diverse areas such as drug design and biomolecular structure. While MD simulations allow 

studying for very large systems and for very long times up to microseconds, the enormous 

amount of data generated requires the development of advanced methodology for extracting 

useful information. Modeling dynamic biological systems such as proteins, nucleic acids, and 

nanostructures on an atomic scale has become crucial for diverse applications in drug design, 

proteomics, and bioinformatics. The task of simulating such systems comes with challenges in 

terms of stability, flexibility, and biocompatibility. In particular, MD simulations can help in 

understanding and predicting systems‘ structure and activity as a function of time at the atomic 

level. The monitoring of time evolution in an MD trajectory can lead to insights on biomolecular 

conformational dynamics, fluctuations, concerted motion, and mechanisms. 

However, such applications have been limited primarily due to a lack of adequate methodologies 

and tools for analyzing the simulation results. An MD simulation generates a large amount of 

data and requires specialized software and hardware for storage and analysis. The demand for 

software tools to elucidate dynamical trajectories has arisen as the number and kinds of MD 

simulations increase. The effective processing and visualization of the massive and complex 

trajectory data require much broader development of tools and GPU-accelerated software. 

Whereas experimental techniques are widely used for biomolecular structure determination, only 

a few tools for the analysis of MD simulation data have been publicly available. These tools are 

often limited in their implementation to only a few predefined analyses and not readily 

extensible for multiple analysis tasks. One clear trend in modern life science research is that 

many researchers are collecting and analyzing huge amounts of in-house and published MD 

trajectory data and are confronted with the increasing need for proper visualization, mining, and 
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analysis methods for understanding this data. 
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