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1. INTRODUCTION 

One method that is every now and again used to record mind electrical movement is 

electroencephalography, or EEG. It is fundamental for the conclusion and cognizance of a great 

many neurological circumstances and cerebrum exercises. Notwithstanding, ocular aberrations 

(OAs), pulses, and strong developments are among the numerous contortions that oftentimes taint 

EEG readings. These artifacts can seriously mutilate the signs and make appropriate analysis 

troublesome. Ocular artifacts coming about because of flickers and eye developments represent an 

exceptional test due to their high recurrence and plentifulness, which make them cross-over with 

EEG signals.[5] 

The accuracy and constancy of clinical and investigate discoveries rely upon the disposal of ocular 

aberrations from EEG signals. There are downsides to involving regular techniques for eliminating 

artifacts, like principal component analysis (PCA), autonomous component analysis (ICA), and 

relapse analysis.[13] These techniques probably won't find success in keeping up with the hidden 

neuronal data and every now and again call for multi-channel accounts. Subsequently, there is a 

rising revenue in exploring refined signal handling methods for artifact revision, for example, 

wavelet transforms.[8] 

Wavelet transform (WT) techniques, for example, the Stationary Wavelet Transform (SWT) and 

Discrete Wavelet Transform (DWT), have become powerful instruments for signal denoising and 

artifact disposal.[14] Since DWT can separate signs into discrete recurrence components, it is a 

famous instrument for assessing non-stationary information like EEG. DWT isn't without its 

disadvantages, however, including frail directionality and shift awareness. Notwithstanding, shift-

invariant SWT, a DWT variation, evades down testing during sifting, so holding more data from 

the first sign, and consequently beats these limitations.[7] 

The brain's electrical activity, or EEG, has remarkably complex behavior with robust non-linear 

and dynamic characteristics. Electrical impulses allow brain cells to communicate with one 

another. The electrodes are applied to the subject's scalp to measure it. The EEG signals are 

produced by the excitatory and inhibitory postsynaptic potentials of cortical nerve cells. The EEG 

is recorded from the postsynaptic potentials that summate in the brain and extend to the scalp 

surface. An EEG signal's usual amplitude ranges from 10 µV to 100 µV, while its frequency falls 

between 1 Hz and about 100 Hz when measured from the scalp. [6] 

The International Federation of Societies for Electroencephalography developed a 10-to-20 

electrode placement method that specifies electrode positions. The link between an electrode's 

position and the underlying region of the cerebral cortex is the basis of the 10–20 system. The 

EEG signal is augmented with various interference waves and artifacts while it is being recorded. 

[11] 

EEG signals are non-linear, nonstationary, and extremely non-Gaussian. The noninvasive method 

of electroencephalography is used to identify symptoms and disorders related to the brain. 

Numerous neurological conditions, including epilepsy, tumors, cerebrovascular lesions, 

depression, and trauma-related issues, can be diagnosed with its assistance. distinct brain functions 

result in distinct EEG signals. Signal processing techniques make it simple to differentiate between 

the brain activity of an abnormal person and that of a normal person. [10] 

Electrodes applied to the scalp record the EEG signals. EEG recordings come in two varieties: (i) 

monopolar and (ii) bipolar. [12] The voltage differential between an active electrode on the scalp 

and a reference electrode on the ear lobe is detected via monopolar recording. The voltage 

differential between two scalp electrodes is provided by bipolar electrodes. The rhythms of delta 
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waves, theta waves, alpha waves, and beta waves are what define EEG signals. Delta activity is 

characterized by a frequency range of 3 Hz or less and is primarily observed in deep sleep stages 

in normal adulthood and newborns up to 1 year of age. The recurrence range of theta activity is 4 

Hz-8 Hz. It is present in healthy newborns and children as well as in individuals who are sleepy 

or sluggish. At the point when individuals who are cognizant have elevated theta activity, it may 

indicate anomalous or diseased circumstances.[9] The recurrence range of alpha waves is 8-13 Hz. 

It is typically seen in the back areas of the head on the two sides, with the dominant side having a 

larger amplitude. The amplitude is primarily seen in the occipitals and is under 50 μV. This is a 

significant cadence seen in typically at ease people. Beta rhythms are fundamentally followed 

down within the frontal portion of the brain and extend in repeat from 13 Hz to 30 Hz. Those that 

are on edge or alert have this beat.[8] 

To combat visual artifacts in single-channel EEG recordings, this consider compares DWT and 

SWT in detail. Assessment of different edge capacities, such as Minimax Threshold (MT), Sure 

Threshold (ST), Universal Threshold (UT), and a proposed New Threshold (NT) work, is the 

essential objective. By controlling the sum of commotion and artifact evacuation from the 

information, the limit capacities are imperative to the wavelet-based denoising prepare. [15] 

The essential destinations of this think about are to decide the ideal edge work for each strategy 

and to evaluate the viability of DWT and SWT in artifact alteration. Some important measurements 

utilized to assess execution are the Artifact Rejection Ratio (ARR), Signal-to-Commotion Ratio 

(SNR), Root Mean Square Error (RMSE), and Correlation Coefficient (CC). By comparing these 

comes about over different techniques and limit capacities, the audit points to supply light on the 

masters and cons of utilizing DWT and SWT to evacuate visual variations from EEG signals. 

The taking after areas of the audit will detail the test setup and dataset, portray the strategies 

utilized to apply DWT and SWT, give the comes about of the comparative examination, and at 

long last, examine the significance of these comes about for clinical EEG investigation. The 

ultimate segment will contain a diagram of the essential objectives and proposals for advance 

examination. This work advances our understanding of brain activity and works on the diagnosis 

and treatment of neurological sicknesses by adding to the continuing endeavors to work on the 

quality of EEG signal handling. 

2. LITERATURE REVIEW 

Akgul, A., Hussain, S., & Pehlivan, I. (2016): This study presents an original tumultuous 

framework in three aspects that consolidates the cubic, quartic, and quadratic nonlinearities. This 

clever framework's central dynamical properties, including its fractal aspect, eigenvalue structures, 

Lyapunov example range, and turbulent ways of behaving, are inspected. Moreover, utilizing a 

picked boundary, this work investigates the bifurcation examination of the proposed turbulent 

framework. The turbulent framework has been examined both hypothetically and through broad 

mathematical investigation. Because of the limitations of electronic parts and materials, 

plentifulness values assume a huge part in tumultuous frameworks for genuine applications. 

Subsequently, the new turbulent framework is rescaled and carried out as an electronic circuit for 

use in a genuine setting. The got results demonstrate that this framework justifies more top to 

bottom exploration because of its muddled elements and charming highlights. Various logical and 

designing fields, including physical science, control, cryptology, and random number generators 

(RNGs), can profit from the new turbulent framework.[1] 

Toral, S. L., Martínez-Torres, M. D. R., Barrero, F., Gallardo, S., & Durán, M. J. (2007): An 

exact exploratory examination concentrate on the utilization of the CMT in the plan of the College 

of Seville's (Spain) Electronic Engineering (EE) degree is introduced in this paper. Involving the 

Career-space determinations as a beginning stage, a conceptualizing interaction was utilized to 

recognize the essential pertinent skills. Utilizing CMT, these skills are organized in view of their 

proclivity, recognizing and examining the essential groups and their relative importance. To affirm 

the exactness of the interaction and approve the results for the educational plan adaption, a 
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dependability investigation of the idea maps was at long last led.[2] 

Zagirnyak, M., Maliakova, M., & Kalinov, A. (2015): This study talks about the utilization of 

the small parameter method (SPM) in the recurrence area for the logical assessment of the 

symphonious parts of flow in electric circuits that contain semiconductor converters. Logical 

circuit examination involving semiconductor converters in electric circuits was led utilizing a 

recurrence space SPM. To empower the capability of acknowledgment of calculation in recurrence 

space, a mechanized method in light of discrete convolution calculation was used to create 

symmetrical consonant parts of electrical qualities. Utilizing the mathematical estimation method, 

a semiconductor converter's nonlinear trademark was given. The reference current qualities in the 

circuit under examination were found utilizing a mathematically organized recreation approach. 

To make the voltage adjusting conditions in the circuit with a nonlinear component, hypothetical 

electrical engineering regulations were applied. It is exhibited that applying a SPM and 

acknowledging it in the recurrence area enormously improves on the scientific examination of 

electric circuits containing semiconductor converters and makes calculation mechanization more 

straightforward. The proficiency and adequate exactness of the proposed method were appeared 

through insightful and mathematical computation of a circuit with a diode under a functioning 

inductive burden. It is exhibited that rising the number of analyzed music and the request for the 

approximating polynomial works on the precision of mathematical calculations. Electric devices 

with nonlinear qualities and electrotechnical devices with semiconductor machines can be 

determined utilizing the work's outcomes. Besides, the obtained results make it conceivable to 

explore the methods utilized in electric organizations with a nonlinear burden that contain 

semiconductor converters to make up for flow higher music.[3] 

Bojoi, R., Neacsu, M. G., & Tenconi, A. (2012): An overview of force electronics converter 

geographies for use in more electric aircraft is introduced in this work, with an accentuation on 

multi-stage drive frameworks. To improve aircraft effectiveness, reliability, and viability, the 

airplane business has found that continuously charging on-board benefits is a suitable method for 

limiting or taking out the need of pressure driven, mechanical, and bleed air/pneumatic 

frameworks. Electromechanical and electrohydraulic actuators are being presented as a component 

of an idea known as the More Electric Aircraft (MEA). Moreover, there is a pattern toward leaving 

consistent recurrence AC energy conveyance for variable recurrence or DC arrangements, and that 

implies that the whole electrical age and dissemination framework is available to emotional 

correction. Not many articles gave a review investigation of the power electronic converters 

utilized in plane applications, in spite of the writing revealing overview papers about electrical 

machines and their electromechanical plan for the MEA.[4] 

3. STATIONARY WAVELET TRANSFORM 

Shift variant is a potential issue with DWT that can lead to significant variances in the energy 

distribution at various scales, significant changes in the reconstructed waveforms, and tiny shifts 

in the input waveform that result in bigger changes within the wavelet coefficients.  

The usual DWT shift variation is made by decimation following filtering. To overcome it, use the 

Stationary Wavelet Transform (SWT) to remove the decimation after filtering. Thus, without 

decimation, SWT shares structural similarities with DWT. Since the wavelet coefficients at each 

level have the same length, the approach is shift invariant. 

This study examines the effectiveness of the SWT method for artifact correction using a range of 

threshold functions and compares it to the DWT technique in terms of common metrics. SWT is 

briefly described in Section 3.1. Section 4 presents the results and discussions, while Section 5 

presents the ultimate conclusions. 

3.1. SWT DESCRIPTION 

DWT is a very effective tool for many non-stationary signal processing applications since it is 

non-redundant; nonetheless, it has shift sensitivity, weak directionality, and no phase information. 
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Numerous academics created real-valued extensions to the conventional DWT, such SWT, to get 

around these restrictions.  

With the exception of the fact that the signal is never sub-sampled in SWT, which is comparable 

to DWT, every stage of decomposition involves up sampling the filters by adding zeros in between 

them and limiting the down sampling of decimation.  

Since every set of coefficients in the SWT has the same number of samples as the input signal, the 

technique is inherently redundant. The SWT hierarchy for a two-level sign analysis and synthesis 

is displayed in Figure 1. For high pass and low pass filters, respectively, use the letters H and L. 

The High pass and Low pass filters' coefficients, also known as detail and approximation 

coefficients, are C d and Ca. . 

 

Figure 1: A Two-Level Hierarchy of SWT Denoising 

The steps below outline the artifact correction methodology:  

(1) SWT breaks down the EEG signal to get the wavelet coefficients for each level. Figure 2 

displays the set of detail coefficients for the Fp2 EEG signal.  

(2) Determine the signal's statistical measures, including its mean and standard deviation. 

(3) After that, a soft thresholding function is used to move the wavelet coefficients to a new 

location.  

(4) Apply the inverse SWT with updated wavelet coefficients to reconstruct the signal. 

MATLAB is used for the wavelet decomposition, thresholding, and reconstruction.  

 

Figure 2: Detail Wavelet Coefficients of Fp2 EEG Signal by SWT 
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3.2. DETECTION OF SPIKE ZONES 

There are several techniques used to identify EEG signal artifacts. When it comes to identifying 

artifacts, wavelet transform methods have shown to be more successful than temporal or frequency 

domain approaches. The raw EEG data is divided into 10-second-long epochs, then 'coif5' is used 

to break down each segment into up to six levels. Each spike typically has three coefficients.  

At each level, the approximation coefficients are chosen in the format a j-1, aj, aj+1. The 

coefficient of variation for each spike zone is computed using the spike zone coefficients (aj-1, aj, 

aj+1). It is necessary to choose the greater values among the coefficients of variation. This 

configuration allows for the identification of blinks in the raw EEG output. Figure 3 shows an 

EEG with the artifacts noted. In the sequel, the rationale behind the division of the artifact zones 

will be made more evident. 

 

Figure 3: Raw EEG with Identified Artifacts 

4. RESULTS AND DISCUSSIONS 

This section deals with the correction of OAs from single-channel EEG recordings using SWT 

with different threshold functions. To demonstrate the effectiveness of the suggested approach, the 

findings are contrasted with those of the DWT method. Every refined signal's performance 

indicators, especially ARR and ΔSNR, are assessed and tallied. In the DWT and SWT domains, 

the effectiveness of artifact removal is primarily reliant on the coefficient thresholding. 

4.1. COEFFICIENT THRESHOLDING 

The detail coefficients in the DWT and SWT domains before and after thresholding using different 

threshold functions are shown in Figure 4. Table 1 provides the associated threshold value s for 

each level in both domains. As an example, the sixth detail coefficient of the Fp2 EEG signal 

displayed in Figure 2 has been selected.  

Detail coefficients prior to thresholding are shown by the blue colored line, and coefficients 

subsequent to thresholding are represented by the red colored line. Table 1 shows that threshold 

values via SWT are higher than DWT at every level. Compared to other threshold functions, the 

NT threshold function has higher values and minimizes the coefficients more effectively. 

 

(a) 
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(b) 

Figure 4: shows the detail wavelet coefficients using different threshold functions before and 

after thresholding using (a) DWT (b) SWT 

The raw and adjusted EEG signals using WT techniques are shown in Figure 5. The mother 

wavelet functions "db6" and "db8" are utilized in the DWT and SWT domains, respectively, for 

the signal decomposition. This figure makes it evident that, for all threshold functions, the SWT 

approach reduces ocular artifacts more effectively than the DWT method. 

The raw and reconstructed EEG signal by SWT employing different threshold functions is shown 

in Figure 6. SWT+N T and SWT+ST approaches are better at decreasing the artifacts than other 

combinations. Threshold function NT has demonstrated greater performance than other threshold 

functions, while ST is the second best at fixing the artifacts. This is because at each decomposition 

level, NT and ST yield greater threshold values. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5: Raw and Reconstructed EEG Signal s by WT Methods Using Threshold Functions (a) 

UT, (b) MT, (c) ST, and (d) NT 

 

Figure 6: Raw and Clean EEG Signals by SWT using Various Threshold Functions 

Figure 7 displays the Power Spectral Density (PSD) of the clean and polluted EEG signals using 

DWT and SWT methods using different threshold values. These Figures demonstrate that for all 

threshold functions, SWT reduces the power of the spectral components at lower frequencies more 

than DWT.  

Table 1: Threshold Values of Detail Coefficients Cd5-Cd8 by WT Methods Using Various 

Thresholds 

Method 
Threshold 

Function 

Threshold Values of Details C d5-Cd8 

λ5 λ6 λ7 λ8 

 

 

UT 104.0 190.9 290.3 122.7 

MT 51.63 77.34 139.42 27.42 
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DWT ST 154.84 196.46 322.89 135.93 

NT 192.56 324.9 628.6 237.86 

 

 

SWT 

UT 143.35 264.30 306.89 214.89 

MT 76.71 193.77 280.54 271.97 

ST 154.14 404.26 589.57 494.54 

NT 174.86 564.30 1148.66 865.44 

 

For all threshold functions, the reconstructed signal at high frequencies is substantially retained in 

both approaches, suggesting that SWT is a better option than DWT for correcting ocular distortions 

in EEG recordings.  

 

 

Figure 7: Power Spectra of Original and Clean EEG Signals by WT Methods using Various 

Threshold s (a) UT, (b) MT, (c) ST, (d) NT 

The values of ARR and ΔSNR by SWT employing various wavelet functions are shown in Tables 

2–5. Wavelet functions 'db8', 'coif5', and'sym10' exhibit greater ΔSNR and ARR values, 

suggesting that they are calibrated to the EEG signal under consideration. The zero padding of the 

filter response at each decomposition level is the reason for the increase in performance metrics 

by SWT. 
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Table 2: ΔSNR, ARR for F7 EEG Signal by SWT Using Different Wavelet Functions 

Wavelet 

Functions 

Metrics 

ΔSNR (dB) ARR 

UT MT ST NT UT MT ST NT 

db6 10.77 8.85 11.99 12.59 0.95 0.86 1.39 1.56 

db7 10.95 9.17 12.14 12.59 1.00 0.89 1.44 1.57 

db8 11.12 10.18 12.20 12.59 1.04 0.92 1.46 1.57 

coif3 10.19 8.89 11.59 12.59 0.82 0.64 1.24 1.56 

coif4 10.36 9.24 11.68 12.59 0.86 0.66 1.29 1.58 

coif5 10.48 9.68 11.78 12.59 0.89 0.72 1.33 1.59 

sym8 10.32 8.74 11.71 12.59 0.85 0.76 1.30 1.57 

sym9 10.47 8.86 11.78 12.59 0.88 0.77 1.31 1.58 

sym10 10.45 9.15 11.81 12.59 0.89 0.80 1.34 1.59 

bior2.2 9.12 8.04 10.64 12.60 0.58 0.36 0.89 1.43 

bior2.4 9.54 8.22 10.99 12.60 0.67 0.54 1.02 1.49 

bior2.6 9.72 8.66 11.13 12.60 0.71 0.62 1.08 1.52 

rbio2.2 8.97 7.85 10.38 12.60 0.61 0.52 0.94 1.43 

rbio2.4 9.50 8.26 11.07 12.60 0.69 0.58 1.10 1.49 

rbio2.6 9.76 8.64 11.38 12.60 0.75 0.64 1.20 1.52 

 

Table 3: ΔSNR, ARR for F 8 EEG Signal by SWT Using Different Wavelet Functions 

Wavelet 

Functions 

Metrics 

ΔSNR (dB) ARR 

UT MT ST NT UT MT ST NT 

db6 9.16 6.82 11.01 12.23 0.89 0.48 1.56 2.28 

db7 9.33 7.22 11.21 12.21 0.93 0.52 1.64 2.28 

db8 9.47 7.46 11.45 12.19 0.96 0.56 1.76 2.29 

coif3 8.53 6.42 9.86 12.22 0.77 0.52 1.18 2.28 

coif4 8.67 6.56 10.04 12.18 0.81 0.58 1.25 2.29 

coif5 8.76 6.58 10.21 12.16 0.84 0.60 1.32 2.30 
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sym8 8.68 6.42 10.05 12.19 0.81 0.58 1.26 2.29 

sym9 8.64 6.22 10.22 12.18 0.81 0.57 1.30 2.29 

sym10 8.79 6.68 10.21 12.17 0.84 0.59 1.32 2.30 

bior2.2 7.79 5.94 9.39 12.38 0.56 0.33 0.90 2.13 

bior2.4 8.05 6.02 9.57 12.33 0.63 0.48 0.99 2.21 

bior2.6 8.19 6.08 9.71 12.28 0.67 0.48 1.06 2.25 

rbio2.2 7.58 5.88 8.69 12.38 0.60 0.44 0.86 2.13 

rbio2.4 7.87 5.98 9.33 12.33 0.66 0.46 1.05 2.21 

rbio2.6 8.02 6.14 9.56 12.28 0.70 0.52 1.12 2.25 

 

Table 4: ΔSNR, ARR for Fp1 EEG Signal by SWT Using Different Wavelet Functions 

Wavelet 

Functions 

Metrics 

ΔSNR (dB) ARR 

UT MT ST NT UT MT ST NT 

db6 11.33 7.82 13.11 16.22 1.21 0.56 1.91 3.60 

db7 11.66 8.10 13.70 16.20 1.31 0.59 2.16 3.62 

db8 11.95 8.24 14.08 16.19 1.39 0.62 2.35 3.63 

coif3 10.16 7.54 10.57 16.21 0.93 0.48 1.08 3.61 

coif4 10.40 7.62 11.18 16.18 0.99 0.49 1.25 3.63 

coif5 10.58 7.66 11.71 16.16 1.04 0.54 1.40 3.64 

sym8 10.35 7.58 10.92 16.19 0.98 0.48 1.18 3.63 

sym9 10.52 7.61 11.18 16.18 1.03 0.52 1.28 3.63 

sym10 10.55 7.62 11.60 16.17 1.03 0.52 1.38 3.64 

bior2.2 8.76 6.68 8.53 16.29 0.60 0.25 0.56 3.33 

bior2.4 9.23 7.12 9.12 16.26 0.70 0.34 0.69 3.49 

bior2.6 9.46 7.35 9.51 16.26 0.76 0.36 0.80 3.55 

rbio2.2 8.44 6.85 8.14 16.28 0.63 0.28 0.63 3.33 

rbio2.4 9.11 7.08 9.21 16.26 0.75 0.33 0.84 3.49 

rbio2.6 9.44 7.26 10.18 16.26 0.81 0.39 1.07 3.55 
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Table 5: ΔSNR, ARR for Fp2 EEG Signal by SWT Using Different Wavelet Functions 

Wavelet 

Functions 

Metrics 

ΔSNR (dB) ARR 

UT MT ST NT UT MT ST NT 

db6 11.49 8.28 13.41 15.73 1.41 0.67 2.34 3.97 

db7 11.79 8.52 13.89 15.70 1.52 0.71 2.63 3.98 

db8 12.06 8.80 14.35 15.69 1.62 0.79 2.89 3.98 

coif3 10.41 7.67 10.77 15.72 1.10 0.45 1.27 3.97 

coif4 10.63 7.84 11.50 15.68 1.17 0.55 1.52 3.99 

coif5 10.79 7.98 12.00 15.65 1.23 0.61 1.71 3.99 

sym8 10.57 7.74 11.33 15.69 1.15 0.58 1.46 3.98 

sym9 10.77 7.86 11.63 15.67 1.23 0.62 1.61 3.99 

sym10 10.75 7.92 11.98 15.66 1.21 0.64 1.71 3.99 

bior2.2 9.06 6.88 8.70 15.86 0.70 0.25 0.63 3.72 

bior2.4 9.54 6.91 9.35 15.84 0.83 0.36 0.81 3.87 

bior2.6 9.75 7.02 9.74 15.80 0.90 0.48 0.94 3.93 

rbio2.2 8.75 6.45 8.57 15.86 0.74 0.33 0.78 3.72 

rbio2.4 9.45 6.98 9.73 15.84 0.88 0.39 1.06 3.87 

rbio2.6 9.77 7.15 10.61 15.79 0.97 0.46 1.33 3.93 

 

While threshold function NT consistently provides the best values of ΔSNR and ARR for all 

wavelet functions, threshold functions UT, MT, and ST with combinations of 'db8' and 'rbio2.2' 

produce the best and least values of ΔSNR and ARR, respectively. Among all the wavelet 

functions, threshold function MT provides the lowest values of ΔSNR and ARR.  

The performance comparison of WT techniques using the combination of ideal wavelet functions 

('db6' and 'db8') for the Fp2 EEG data is shown in Figure 4.8. When it comes to ΔSNR and ARR, 

threshold function NT performs significantly better than other threshold functions in both 

approaches. The percentage change in metrics improvement between the proposed approach and 

a current method is determined using Eq. (1). 
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Figure 8: Comparison of Wavelet Functions in DWT and SWT Domains for Fp2 EEG signal by 

(a) ΔSNR, (b) ARR 

Table 5 shows that the improvement in ΔSNR and ARR by SWT+db8+NT compared to 

SWT+db8+ST is 9.3 and 37.71 percent, respectively. Using Matlab scripts, these methods are run 

on a Core i9 processor running Windows 11 with 32 GB of RAM. For the same length of data, the 

average processing times for the two approaches are determined, and the results are given in Table 

4.6. This table unequivocally shows that DWT is faster than SWT method; this is because SWT 

adds a significant amount of redundancy during the signal decomposition process. 

Table 6: Average Execution Time of WT Methods 

Method DWT SWT 

Average Execution Time (sec) 0.015 0.05 

 

4.2. RESULTS ON EXPERIMENTAL DATA 

The SWT approach is applied to experimental data, just like DWT. Using an ideal wavelet function 

in both ways, the raw EEG signals are broken down into approximate and detail coefficients. Soft 

thresholding is then used for details between 5 and 8, and the inverse wavelet transform is used to 

reconstruct the signal. Figures 9 and 10 show the simulation results in the time and frequency 

domains before and after the artifact removal. Table 7 presents the average performance metrics 

of both approaches using different thresholds for the raw and clean EEG signals.  

Upon examining Figures 9 and 10, it is evident that the DWT and SWT approaches, which employ 

different threshold functions, perform better at eliminating artifacts with smaller amplitudes but 

fall short in minimizing those with larger amplitudes. The power spectra of clean and raw EEG 

signals obtained by SWT employing different threshold functions are shown in Figure 11.  
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Figure 9: Comparison of EEG Epochs (Multiple Eye Blinks) Before and After Denoising by 

WT Methods Using Threshold Functions (a) UT, (b) MT, (c) ST, (d) NT 
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Figure 10: Comparison of EEG Epochs (Large Eye Blinks) Before and After Denoising by WT 

Methods Using Threshold Functions (a) UT, (b) MT, (c) ST, (d) NT 

  

Figure 11: Clean and Contaminated EEG Signal Power Spectra by SWT Using Different 

Threshold Functions (a) Blinks from several eyes (b) Blinks from larger eyes 

While threshold function NT reduces artifacts more effectively than other threshold functions, over 

non-blink regions the reconstructed signal produced by NT differs from the actual EEG signal.  

Table 7: Average ΔSNR and ARR Using Different Threshold Functions for WT Methods 

Comparing Raw and Clean EEG Signals 

Methods Thresholds 
Metrics 

ΔSNR ARR 

DWT 

UT 10.82 2.14 

MT 7.54 1.22 

ST 12.24 3.26 

NT 16.18 4.28 

 UT 19.45 8.86 
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SWT MT 12.66 4.48 

ST 22.88 12.92 

NT 24.24 16.26 

 

The background data in non-artifact regions should be preserved while the artifacts in the blink 

zone are eliminated using an efficient artifact removal technique. The EEG signal is divided 

between regions that blink and those that do not, and the raw and reconstructed EEG signals at n 

on-blink regions are compared for Correlation Coefficient (CC) and Root Mean Square Error 

(RMSE). The Fp2 EEG signal's CC and RMSE values obtained using various techniques are 

shown in Table 8.  

Table 8: CC and RMSE between Raw and Clean Fp2 EEG Signals by WT Methods 

Method Threshold 
Metrics 

CC RMSE 

DWT 

UT 0.955 14.94 

MT 0.972 13.07 

ST 0.742 16.85 

NT 0.473 21.24 

SWT 

UT 0.968 11.08 

MT 0.990 9.69 

ST 0.782 14.77 

NT 0.559 18.75 

 

CC is a statistical quantity that shows the degree of similarity between two signals given by Eq. 

(2). 

𝐶𝐶 =
∑ (𝑋1[𝑛] − 𝑋1)̅̅ ̅̅̅(𝑦1[𝑛]
𝑁
𝑛=1 − 𝑦1)̅̅ ̅̅

√∑ (𝑋1[𝑛]
𝑁
𝑛=1 − 𝑋1)2̅̅ ̅̅ ̅̅ ∑ (𝑦1[𝑛] − 𝑦̅1)2

𝑁
𝑛=1

 

RMSE estimates the difference bet ween the raw and clean EEG data given by Eq. 3  

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑋1[𝑛] − 𝑦1[𝑛])2

𝑛

 

Where x 1[n] and y1[n] represents the raw and reconstructed EEG signals in artifact free regions. 

Table 8 shows that while NT produced poor outcomes in both techniques, MT and UT performed 

better based on the CC and RMSE threshold functions. At every decomposition level, the 

exponential threshold improvement factor of NT could be the cause. 

5. CONCLUSION 

This work proposes OA correction in single-channel EEG using SWT utilizing different 

thresholds. The effectiveness of the suggested approach is contrasted with the current method 

(DWT) using the following metrics: power spectrum, ΔSNR, ARR, CC, and RMSE. It is noted 
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that the threshold function NT produced a better result than other thresholds in terms of ΔSNR and 

ARR, and that the SWT approach performed better than the DWT method. But in terms of CC and 

RMSE, threshold functions UT and MT have performed better than other thresholds.  

While threshold function NT does a better job of rejecting artifacts, it still has to be improved 

because it significantly affects the neural information in non-blink regions. On the other hand, 

SWT requires more processing and redundancy. Additionally, wavelet transform (SWT, DWT) 

lacks adaptability. The performance of artifact removal is also affected by the wavelet that is 

chosen.  
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