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Annotation: Dynamic, safe, and predictable 

synthetic transformation of one type and one microbe 

of a low-cost translational gene circuit was sought to 

implement a multispecies biocomputation system. As 

design criteria, the ability to provide a target 

environmental signal, the supply of a metabolic gene, 

modularity, and a numerical control mechanism were 

specified. An extended parametric design space was 

employed to allow ad hoc aspects such as a mechanical 

amplifier and saturation thresholds to be specified post 

hoc. Metabolic background genes targeting lemon 

scent and 3-hydroxypropionic acid production were 

autoannotated. Bayesian inference was employed to 

select a design load that would be slow and 

competitive for natural selection, while construction, 

embedding, and testing were guided by a balance of 

rules and experience. Experiments validated culture 

and micromillifluid formats, and a model-guided 

dosing strategy ensured quicker and richer responses, 

guiding further steps towards self-dosable living 

therapeutics and low-cost devices. The specification, 

exploration, and inference of load requirements 

significantly extend the capabilities of previous 

biocomputational designs and obviate the need for 
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target-specific knowledge. All approaches should be 

emergently applicable to a multitude of natural and 

synthetic biocomputations. Potential ecological 

consequences should be manageable as the system 

should be functional only in specific analysis and 

health contexts. To address biological systems, 

synthesis, stability assurance, spatiotemporal 

addressability, and measurement were specified. 

Recursive sequential construction was sought to ensure 

modularity from the outset and enable the 

quantification of constituent interconnectivity 

probabilities. To parse the available solutions, the K-

frame formalism was extended to active parts, and 

trusted parts were distinguished from potential ones. A 

level structure was adopted for the coherent generation 

of large, complex grammar-guided designs. Stochastic 

and kinetic threshold models were applied to encode 

containment and growth rate mismatch, respectively. 

To construct an interlocking multilayer graph, once 

trusted templates were prepared, their spatiotemporal 

specification was treated at the legal level. Briefs 

generated a readability-oriented pen screen to ensure 

clarity. Candidate selection was guided by 

electrostatics-derived scoring to efficiently focus 

mutagenesis on the most unreliable components. 

  

 

1. Introduction to Synthetic Biology 

In recent years, there has been an increasing drive toward the design and engineering of complex 

biological systems. Alongside, a newly emerging subdiscipline called ―synthetic biology‖ has 

manifested. Synthetic biology refers to the application of the ideas and techniques of traditional 

engineering—abstraction, standardization, and the construction of complex systems from simple 

building blocks—to the construction of biological systems that perform novel functions. 

Synthetic biologists design and construct complex artificial biological systems using insights 

discovered by systems biologists. Synthetic biology offers a new paradigm for the manipulation 

of biological systems and, because synthesis inevitably relies on a thorough understanding of the 

systems involved, it motivates additional discoveries in systems biology. There are already 

practical applications for synthetic biology, just as several engineering scenarios inspired the 

early development of computer science. A central goal of synthetic biology is to make the 

creation of new biological systems as simple and reliable as the creation of electronic systems is 

today [1]. Synthetic biology is an emerging field of interdisciplinary research that seeks to 

transform our ability to manipulate and interface with living systems. Synthetic biology refers to 

a novel endeavor of biological design in which natural and lexically encoded biochemical 

systems are studied, discovered, engineered, and combined. Its main aim is to increase the ease 

and efficiency with which biological systems can be designed, constructed, and characterized. 

Core efforts in the field have focused on the development of tools, languages, and protocols to 

support this goal, including new approaches to biological design and fabrication. Importantly, 

these tools need to be analyzed and evaluated. Recent research has focused on implementing 
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synthetic biological devices and systems in diverse applications, including disease therapy, 

environmental remediation, and biosynthesis of commodity chemicals. Synthetic biology is 

advancing biological frontiers by expanding biomanufacturing capabilities, developing 

therapeutic approaches, and providing new insight into natural biological systems. Applications 

include in-depth studies of basic biology and new frontiers in health and medicine [2]. 

2. Overview of Machine Learning in Biotechnology 

Machine-learning (ML) approaches have been efficiently integrated in various biotechnological 

applications [3]. The use of rules and heuristics to extract meaningful descriptions of patterns is 

among the oldest machine-learning strategies in bioinformatics. Nevertheless, the recent and 

rapid development of deep neural networks (DNNs) has transformed the bioinformatics 

landscape, enabling users to extract such patterns without having to explicitly formulate them as 

rules. Moreover, focusing on human-designed patterns with limited expressiveness can 

potentially restrict the extracted information space and interpreted rules to those forms defined 

by human knowledge of the biology, missing certain biological discoveries. Driven by high-

throughput biological datasets and major progress in deep learning, ML has gained a pronounced 

traction in biology and bioinformatics. Its diverse applications exhibit a diverse range of 

significant impact factors in medicine and research. However, several barriers currently hinder 

further application of existing methods, as well as testing of new ideas within the framework of 

ML and the related disciplines of deep learning or artificial intelligence. Examples of these 

barriers include excessive development overhead, lack of expertise, insufficient robustness, and 

difficulty in incorporating domain knowledge and prior biological knowledge. These concerns 

will often discourage biology and bioinformatics researchers from applying existing solutions or 

methodologies or testing new approaches outside a very narrow range of practicable datasets 

where the requirements of existing ML methods can be satisfied. Although addressing these 

issues not only would make a great flow of new ideas and new discoveries possible, but could 

further promote the scientific revolution that modern bioinformatics is believed to have been 

undergoing. 

3. Genomic Engineering Techniques 

Genomic engineering is an emerging field investigating and manipulating DNA in a synthetic or 

hybrid design style, and recently selected and optimized biomolecules. Progress in genomic, 

transcriptomic and proteomic sequencing technologies converges with earlier developments in 

protein and gene modeling to enable DNA sequence design and optimization of coding, 

regulatory and binding sites. Novel polymerases are developed which make new DNA sequences 

from edited templates. The hashtag #genomeengineering gains attention in 2011, and the authors 

of this essay see this as indicative of the growing interest and relevance of design and 

engineering approaches in genome-scale biology and directed evolution. [4] argue about the 

current capabilities of synthetic biology for genome-scale engineering. Broadly applicable 

genomic engineering techniques are described focusing on near-term applications and promise to 

speculate about future long-term possibilities. 

The genome contains all information necessary for life. Ultimately, all first principles of system 

and synthetic biology will be genetically grounded. The machines we build and their building 

blocks, such as DNA, RNA, proteins and metabolic pathways, are alive. The basic theoretical 

framework is set by molecular genetics. In time, the entire sequence and structure of whole 

genomes will be specified, designed and fabricated from molecular building blocks. However, 

despite growing knowledge about genomes, mechanisms governing evolution, and advances in 

reading and writing DNA, amazing ignorance persists on many aspects of genome composition 

and architecture. Yet basic understanding of de novo genome assembly, repair and ongoing 

development is being gained using RNA sequencing technologies. Understanding plasticity 

promoting robustness adaptation is premier for any non-monolithic computer system. 

Rapid developments in design and engineering knowledge relevant for genome-scale biology 
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include genome modeling, energy-aware bioinformatics, mass-traffic and fluid-dynamics 

scalable biomolecular assembly simulations, and de novo, trans-acting and in situ introduction of 

deleterious mutations into whole genomes and restoration of methylation states and genetic 

integrity. Details and ramifications of design initiatives may be fully understood only once the 

first synthetic ―minimal‖ genomes are characterized and life emerges from this ―artificial‖ chaos 

as the end-state of an optimization process converging toward a stable adaptive configuration. 

[5][6][7] 

3.1. CRISPR-Cas9 Technology 

The CRISPR-Cas9 system allows efficient site-specific genomic modifications in a wide variety 

of organisms. Many aspects of this technology have been engineered to improve its versatility 

and reduce potential side effects, including Cas9 variants and their associated crRNAs and 

tracrRNAs, guRNA/protein ribonucleoprotein complexes, or the use of RNA guides activating 

endogenous DNA repair pathways. Specificity is one of the most challenging aspects to address 

with this technology, and while many efforts have been focused on the production of Cas9 

variants with altered PAM or higher fidelity, gRNAs are the most common synthetic component 

of the CRISPR-Cas9 system. They are simple linear oligonucleotides with a length of around 

100 nucleotides. Diverse algorithms have been developed to save labor in their design, guiding 

the selection of the gRNA as input. However, since they still require an important manual 

annotation process, a unique and standardized input format to exchange gRNA collection and 

corresponding annotation is required. An alternative is the use of proprietary platforms, which 

use complex but effective methods for prediction, computation, machine learning, or indexing, 

allowing the gRNA output to work directly with existing gRNA or Cas9 libraries. 

The promise of CRISPR technology for use in biomedicine is vast, but achieving specific and 

efficient CRISPR-based genome editing remains a significant challenge. Notably, promote off-

target activity may have unwanted detrimental effects and thus need to be addressed. In recent 

years, increasing efforts have been devoted to the design and engineering of the gNRA open 

complex so enable more specific and accurate targeting, resulting in better control of CRISPR-

Cas9 systems. However, the design and analysis of gRNA remain a work-intensive process and 

gRNA design tools often only involve one or a few aspects of gRNA design, while a good gRNA 

is expected to fulfill as many design criteria as possible. Advances in machine learning methods 

for predicting the various selectivity features and the availability of large amount of genomics 

data offer a powerful opportunity to accelerate CS gRNA design. However, current approaches 

fail to work on large scale and for multiple species [8]. In this review, current challenges and the 

state-of-the-art of CRISPR–gRNA design APIs for editing Cas9 and other type CRISPR systems 

are covered. The recent efforts towards more specific CRISPR–gRNA systems and promising 

opportunities of machine learning-based gNRA design are discussed. 

3.2. Gene Editing Tools 

From the moment of the birth of mankind, genes have been the basic unit of life and self-

replication. They are the instructions for making proteins and one of the most important carriers 

of biological information. An enormous amount of genetic information is hidden in the 

nucleotide sequence. Human beings can only see the surface of the ocean, and sometimes, only a 

single base mutation has the potential to cause incurable diseases and even death. Although an 

appreciation of the harmony of intelligent design and the wisdom of the Creator often arises due 

to their careful arrangement, cacophony is inevitable. Like the old-fashioned English nursery 

rhyme, ―There was an old woman who lived in a shoe; She had so many children, she didn’t 

know what to do‖ alluding to uncoordinated protein production, which might consequently cause 

serious disease. Even nucleotide sequence alterations of the same length may cause diverging 

and unpredictable events. Single nucleotide variation (SNV), in vitro deletion, gene flipping, 

inversion, transposition, and repeat expansion of nucleotides can all cause human disease [9]. 

The discovery of AGCT past the biopolymer era programmed the expansion of following 
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discoveries, and it has been the cornerstone for the desire to know genes and their mutations as 

well as the mutations of mutations. Over the past decade, the rapid expansion of gene-editing 

technology has reshaped this conception. These molecular tools have driven a revolution in the 

therapeutic industry. The ―genomic scalpel‖ offers a profound opportunity to investigate genetic 

information, expanding the understanding of gene functions. The exclusion of perfect biological 

tools must be discarded. Reprogramming biology is no longer a pipe dream or science fiction 

scenario. Airborne self-replicating viruses, more specifically self-evolving and self-replicating 

bio-mechanical devices, may be used to create universal strategies to treat previously incurable 

genetic diseases within years and weeks of symptoms. Continued efforts to understand these 

disease-causing mutations will be crucial to improving health care for patients with genetic 

disorders. [10][11][12] 

4. AI Applications in Genomic Data Analysis 

Artificial intelligence (AI), or machine learning, has gained momentum in computational 

biology. Together with revolutionising data-generation technologies, AI applications enable the 

high-throughput collection of biological data with creating unprecedented biological datasets. To 

address biological challenges with big data, AI addresses diverse tasks in biological data 

analysis. Its applications in genomic data and biology are summarised in two parts: the first 

concerns unstructured genomic sequences, ranging from next-generation sequencing data to 3D 

genome structure, and the second is about health-related datasets, including medical images and 

omics data [13]. Much progress has been made in the application of deep learning on the 

genomic level, especially with the continued development of next-generation sequencing 

technology, which has generated an increasing volume of genomic data. The behaviours and 

structures of genome sequences were studied, enabling various applications such as disease risk 

prediction and biomarker discovery. The synthetic and epistemic uncertainties in the deep 

learning process were investigated to ensure the genomic task with uncertain performance 

outcomes if deployed. Current challenges and future perspectives of deep learning in genomic 

medicine are highlighted. Examples include modelling, jointly modelling protein sequences and 

structures as graphs via a unified framework that outperforms state-of-the-art methods on the 

Cantor 9 benchmarks used for both sequence and structure protein structure prediction. 

The second frontier of deep learning in biomolecular sequence analysis, which has unknown 

sequences, structures, and folds, is reviewed, namely sequence-based contact prediction, 

structure roadmap learning, and 3D-to-sequence generation. Two critical tasks in this frontier are 

newly proposed. These have the potential to address fundamental problems in protein modelling 

and design and provide interesting future directions to leverage recent advances in representation 

learning tools. The synthesis of unnatural DNA bases and further new amino acids for proteins 

were discussed. Another review is on deep learning architectures for pseudogenes predicting that 

are highly suitable for biologically applicable tasks. A practical guide to the use of recurrent 

neural networks for autoregressive sequence-to-sequence modelling and insights into their 

operation in the context of biology are also presented. A multilayered genome synthesis and 

verification model based on a two-step approach is explored. 

4.1. Predictive Modeling 

The relatively recent convergence of advances in machine learning and big data with scientific 

disciplines has resulted in a veritable Cambrian explosion of new methodologies. Many of these 

methodologies leverage abundant sequencing data to produce accurate statistical models of 

biological systems that generalize into new conditions and make bottom-up predictions for 

experiments not yet conducted. Systems Biology, the study of biological systems in their full, 

multi-omics complexity, has had vibrant interactions with the burgeoning machine learning 

community over the last decade. Rapid advances in sequencing technology have ushered in big 

data across disciplines, yet the models to generate and analyze this data have not kept pace. New 

statistical models are being developed to address this imbalance, as well as due to the sheer 
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newness of the technology. New theoretical insights into the properties of these models are 

pressed into fruitful new applications, where combinations of more traditional and new methods 

produce powerful inductive inferences across disciplines. 

Novel synthetic biology capabilities hold the promise of dramatically improving our ability to 

engineer biological systems. These capabilities include genetic parts databases, project-wide 

repositories for experimental data, and a range of software tools for genetic and metabolic 

engineering, pathway design, and modeling. However, a fundamental hurdle in realizing the 

potential of these tools is our inability to accurately predict biological behavior after modifying 

the corresponding genotype [14]. Kinetic models have traditionally been used to predict pathway 

dynamics in bioengineered systems. However, limited accessibility of substrate parameters, ad 

hoc construction of rate equations, and computational complexity of reaction networks make 

model fitting difficult and limit the mitigation of bioproduction failures. Additionally, 

painstaking kinetic modeling of potential pathways long before being bioengineered results in 

poor design space coverage, where even with perfect sensitivity information, some desired 

backbone cannot be achieved with any design inputs. 

Machine learning’s window for application has broadened dramatically with the rapid increase in 

data availability across many fields of science. For fully automated pathway design, there are 

two relevant sets of events. First are design inputs, the pathway of input modifications to 

genetic/biochemical parts in order to steer the system towards a certain behavior of interest. 

Second are the events computed by a design input in the ║time, valueFl✟, valueD✟, pertP✟
хperts┤ space. A recent proof-of-concept pipeline for guiding pathway design in silico has been 

proposed [15]. 

4.2. Data Mining Techniques 

Data mining, a key component of knowledge discovery in databases, is the process of exploring 

and analyzing large amounts of data to uncover meaningful patterns and rules. Data mining 

collects and transforms data to prepare it for analytical modeling and further analysis in other 

business intelligence tools. Machine learning (ML) models, powerful tools that automatically 

improve from experience, are used in data mining to uncover previously unknown patterns. Data 

mining has applications across various sectors, including finance, healthcare, retail, government, 

and telecommunications. 

The data mining process consists of several steps: data preparation, data exploration, data 

modeling, data evaluation, and reporting and deployment. In data preparation step, the data of 

interest are gathered and preprocessed to eliminate noise and irrelevant variables. In data 

exploration step, the relationships and patterns in the data are explored through various analytical 

and visualization techniques. In data modeling step, ML techniques are employed to build 

models from the data, and in data evaluation step validation is applied to evaluate the generated 

models. In reporting and deployment step, the useful patterns are reported, and the models are 

deployed for use [3]. 

Common patterns uncovered in data mining include clusters and cluster patterns, associations 

and association rules, sequences and sequence patterns, and dependencies. The association rule 

mining algorithm unveils the associations among the conditions and helps to indicate potential 

market strategies. This mining mechanism is widely used in the retail business by modeling 

shopping baskets to guide managers in stocking, pricing, or making promotional offers of their 

products. Clustering is a powerful knowledge discovery tool that uncovers the underlying 

structures of the data and classifies similar data items into groups. 

5. Integration of AI and Synthetic Biology 

Synthetic biology and artificial intelligence (AI) are two themes of enormous current interest that 

have a great range of overlap. The integration of these areas is possibly an exciting option for 

both life- and data-driven technology. The share of AI in the development of synthetic biology is 
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so big and continues having a nice rise. Synthetic biology research making AI's discovery 

generalizations is on a steep slope to writing a new generative model in the research area [15]. 

AI's generic models or scientific knowledge in any given field were previously captured by 

specific sets of neural networks or algorithms for a full domain. This new avenue for research 

assistance has a large set of possible inputs, which usually come as associated data, for building 

large-scale models. 

However, despite being simpler than gene coding, understanding biodesign knowledge and 

knowledge-derived models or tools is challenging. Understanding of a wide variety of net and 

state representations for adaptive biodesign processes has largely been missed. Furthermore, this 

comprehension gap hinders the further development, adaptation, and validation of general 

frameworks and learning methods tailored to biodesign tasks. The knowledge from both previous 

works and deep neural representations have only helped trained models for single steps of 

evolutionary search with various descriptions [16]. Organic search is like random number 

generation, and simple mutations are equivalent to both expected locality and return. 

The question now left is whether the AI model proposed can generalize across different 

biodesign tasks and research processes. The performance on totally different biodesign tasks than 

protein generation was evaluated. The domain trolley, design of a simple mobile robot program 

for making circle sweep or square sweep along the given path, was studied. The chosen designs, 

though dissimilar from previous experiments, were structural. 

5.1. Machine Learning Algorithms 

Artificial Intelligence, which is shaping up to be the next industrial revolution, has taken the 

world by storm and has already started finding its application in the biological sciences. Machine 

Learning (ML) has driven commoditization and automation in computational biological research. 

ML technology enables bioinformaticians to handle large datasets regardless of their knowledge 

of biology. Bioinformatics ML algorithms allow for genome analysis, numemonics, system 

biology, and recommendation systems to find similar genomic sequences based on sequence and 

gene similarity. Using bioinformatics ML, researchers have modeled various aspects of 

biological research, to name a few, predicting SCF PRE for the enahlucats of SCF and phage, 

predicting transcription, predicting protein-protein and protein-DNA interactions, protein folding 

and proteomic analysis, predicting immune-system response, Neuro-Fuzzy Approach for Gene 

Expression, and biochemical pathway analysis. 

ML advances have inspired a new wave of genetic engineering strategies. Recently, several 

machine learning techniques for predicting off-target mutations in Cas9 gene editing have 

emerged. These models predict the score for guide RNA-Cas9-complementary DNA binding and 

off-target cleavage [17]. Following this trail, a new program developed by Jiecong Lin and Ka-

Chun Wong has emerged, improving the quality of these machine learning predictions by using 

deep CNNs and deep FFs. The early implementation of CNN and FF proved less effective than 

the incorporation of these models, mostly resulting in AUC. Considering the space for error and 

off-target mutations when aquiring a durable knock-in, there has been considerable investment 

into Cas9’s potential. Scientists are looking for smarter approaches for developing activity 

predictors and more reliable Cas9 variants to reduce the overall chance of off-target mutatons. 

The output of the 3d CNN structure would help support deep generic feature extraction using 

channel sparse fine-tuning. With a final layer of self-attention mechanism-based classifier, very 

proactive gene-editing collaborations are ongoing. On top of that, there are attempts to predict 

greater accuracy and fidelity Cas9 variants and hyper-accurate Cas9 variants, as well as a guide 

RNA design tool that uses deep learning to select the lowest off-target candidates. Outside of 

CRISPR gene editing, O’Brien and colleagues dug into the efficiency in nucleotide editing by 

exploring how different nucleotide compositions influence HDR efficiency even further by 

employing random forest algorithms to explore their dependencies. They developed the 

Computational Universal Nucleotide Editor (CUNE) to adapt functionality into the more druggy 
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versions for therapeutic and diagnostic purposes, used to find out the most efficient method to 

identify a precise location to enter a specific point mutation, and try to predict HDR efficiency 

with only the input sequence. [18][19][20] 

5.2. AI-Enhanced Design of Biological Systems 

The design-build-test-learn (DBTL) cycle is an iterative process for engineering biological 

systems efficiently [15]. It employs Artificial Intelligence (AI) to automate the design of 

different configurations of the systems, with the aim of achieving desired functionality. Prior to 

the emergence of AI, the DBTL cycle was performed with either experimental or computational 

biodesign approaches that systematically search the design space using analyses of underlying 

biological principles. However, such approaches are commonly labour-intensive and slow, 

leading to a partially solved problem in synthetic biology. As an alternative, AI approaches to 

automatically design biological systems are developing. These approaches have the potential to 

efficiently predict biological behaviours by training computational models from prior 

observations of the systems, analysing search spaces of new designs to discover designs that 

meet desired feedback performance. To provide a more comprehensive overview of the AI 

techniques characteristic of applied ML models/algorithms in this domain, bioelectronic sensors 

and integrated intelligent living systems are also presented as important biodesign examples. 

Despite many recent advances in AI-driven SB, the application of the field is still in its infancy. 

On the one hand, mainstream machine learning techniques represented by deep learning are 

powerful, but they lack the capability to represent relational knowledge that is widely seen in 

biological systems; they also require prodigious amounts of annotated training data for their use 

and have difficulty in generalizing knowledge and skills to novel situations due to a lack of an 

innate reasoning component. All of these drawbacks strongly restrict AI's role in synthetic 

biology, a field that deals with massive relational knowledge that is, in many cases, poorly 

annotated. On the other hand, robotic experiment automation techniques developed by roboticists 

are emerging that can drastically reduce the manual effort of precise experiment execution; 

however, this will lead to tedious, costlier and longer experiments when knowledge inference 

cannot keep pace. [21][22][23] 

6. Case Studies in AI-Driven Synthetic Biology 

Increasingly, the integration of genome engineering and machine learning is transforming 

biological research, and AI-driven synthetic biology is the next frontier of this integration. AI-

driven synthetic biology encompasses a wide range of workflows, including design (rational + 

autonomous), synthesis (chemo-, bio-, mega, in vivo, in silico), and characterisation + modelling 

(high-throughput, dynamic). Biology has a long-standing association with AI, beginning with 

work on expert systems, rule-based reasoning and symbolic search methods in the late 1970s and 

1980s, reinforced by numerous publications and research activities over the ensuing decades. 

Artificial Intelligence (AI) denotes systems that mimic human reasoning or perception to achieve 

human-like errands in closed problem domains (goal directed behaviours). Thus, a more concrete 

definition of AI could refer specifically to knowledge based, search based or reasoning based 

systems. However it is important to highlight that such definitions fail to encompass all aspects 

addressed by AI models in biology [15]. Machine Learning (ML) (a.k.a. statistical learning, data 

mining) is a specific subfield of AI that discerns patterns in empirical data to learn possibly 

predictive models of the world, usually represented and searched in a mathematical, probabilistic 

framework. Many machine learning models are considered AI systems, whereas a notion of very 

weak AI could be defined as any human-comparable algorithm. It is important to know what 

common definitions of these terms (AI/ML) will guide the interpretation of delta/delta metrics 

following analysis of results. AI is a vast and rapidly evolving field. AI has a long history in 

biological applications, initially using symbolic AI methods but increasingly using machine 

learning (ML) and the combination of both. The explosive progress of deep learning (DL) 

broadens opportunities for the use of AI in biology. AI-driven synthetic biology – integrating 
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genomic engineering with statistical learning and reasoning with knowledge – is accelerating 

advances in medicine, agriculture, bio-bio/fuel/chemical, and bio-computation. [24][25] 

6.1. Synthetic Pathway Construction 

The effectiveness of the biodesign pipeline is demonstrated through the systematic construction 

of a set of synthetic biopathway designs that utilise the DNA-BOT platform for DNA assembly. 

This case study confirms the validity of a biodesign strategy based around basic engineering 

principles of biocircuit construction using quantitative models. All the strategies highlighted in 

the case demonstrate regularities consistent with established Design-Build-Test-Learn (DBTL) 

approaches where building additional devices is relied upon for testing the biodesign search 

space. This includes growth, where operational parameters are varied either to demonstrate 

proof-of-concept of the biodesign approach or to perform exhaustive DA to search for sequence 

motifs that satisfy the biodesign, and synthesis. A trade-off exists between the reliability of a 

biodesign strategy and the complexity of the downstream synthetic process. In the biodesign 

space investigated, a dramatic difference in assembly success rates of 53% for unprocessed 

designs vs 36% for screened designs. This trend indicates that error assembly caused by cross-

contamination during biodesign is a significant cause of downstream DDS. 

A novel biodesign framework has been developed that permits the fully automated construction 

of pathway-like gene circuits from an annotated metabolic network. The generality of this 

pipeline is demonstrated through its successful application to construct artificial pathways across 

six different biodesign spaces with very different characteristics. The industrial relevance of the 

screening strategy is increased through the use of DNA synthesis technologies that can produce 

libraries of one million designs. Through the active learning methodology, machine learning is 

used to predict genetic designs that best satisfy a working biodesign in silico with high accuracy. 

This framework has great potential to expedite the ongoing industrial efforts to increase the 

diagnostic sensitivity of CRISPR-based LAMP assays. 

6.2. Metabolic Engineering 

A diverse range of high-throughput methods to model and reprogram microbial metabolism is 

highlighted in this section. For metabolic engineering and synthetic biology to reach their full 

potential, it is increasingly necessary to be able to better exploit genomic information, build large 

sequence libraries for characterization and pathway assembly, and measure reactions on many 

substrates, metabolites, or time points. However, the computational tools necessary to tackle 

these problems require the incorporation of more biology and machine learning techniques. 

Machine learning and statistical models can be employed to rationally explore metabolic design 

spaces, which can drastically accelerate the search for improved endogenous or heterologous 

pathways. The incorporation of complex statistical models and multilayer networks to capture 

the regulatory architecture of metabolic networks is also called for, because often the largest 

source of uncertainty in pathway simulations derives from regulation on high-level decisions. 

Metabolite production, uptake, and secretion can be systematically engineered by incorporating 

the relevant input-output design equation, solubility and feedback regulation can be made 

explicit components of the design equation, and fermentation process dynamics can be included 

into metabolic designs. There are many concerns about the future of metabolic engineering or 

systems biology. Perhaps more fundamentally, there are warnings about the heuristic limitations 

of current reconstruction, in terms of omitting important information or oversimplifying details. 

In contrast, this section called for more rigorous studies focused on existing design questions, 

which yield quantitative measures of predictive ability. Existing models can yield advanced 

engineering opportunities and deep biological insights in the answers to design questions tackled 

with them, e.g. through the construction of new multicellularity forms [26]. 

The challenges ahead relate to the integration of metabolic design, modeling, and 

experimentation at greater scales. This will require the integration of diverse measurement and 
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modeling techniques, and exploration of new philosophies and heuristics for biological modeling 

and design at the circuit level and within networks [27]. Specific challenges ahead include the 

need for simultaneously considering multiple time and length scales in the design of large 

boolean molecular circuits, the intensively debated issues of robustness, evolvability and 

controllability of large biologically realizable circuits, and the design of synthetic multicellular 

arrangements composed of several interacting, communicating, and thriving cell species. 

7. Ethical Considerations in AI and Synthetic Biology 

Artificial intelligence (AI) brings both opportunities and challenges to science and society, 

particularly in biotechnology and genome editing. The history of biotechnology has shown that 

the most dramatic breakthroughs have raised fundamental ethical questions about potential 

misuse to harm life and health on Earth. AI has already demonstrated an alarming dual-use 

potential, where generative AI creates biodesign capabilities for convenient biological agents for 

weaponization and biological warfare. Governance and regulation efforts in this area need to be 

well-informed and well-coordinated globally and nationally, just as genetic engineering 

technologies have developed over the last 70 years. However, it has taken decades to establish 

governance guidelines after the invention of recombinant DNA technology, where actors were 

warned of the possibilities of runaway genes. This history of urban hype and a focus on genome-

editing gambling in Europe has resulted in synthetic biology being a rapidly descending platform 

under AI engagement. 

AI can dramatically accelerate the design-build-test-learn cycle of biotechnology, where 

complex designs are better subjected to more efficient engineering platforms. The new 

capabilities created by large language models (LLMs) and generative AI are serving a growing 

number of biotechnology start-ups, and many fund-raise tens of millions of dollars based on a 

few written sentences. Together with rapid developments in cloud computing, massive open 

biological databases, and lab automation, the AI-enabled platforms are arguably at the edge of 

revolutionizing synthetic biology. Life may soon be on demand programmed as easily as created. 

Nevertheless, the whack-a-mole problem as actors, organizations, and conventional approaches 

becomes obsolete given such novel cumulative opportunities and challenges. 

AI-enabled biotechnology is new and there is an absence of a dedicated macro governance 

framework regarding this issue. It is crucial to address the governance gap for this emerging 

issue with a mix of mechanisms. Furthermore, extreme measures are needed to close existing 

loopholes and prevent potentially profound and irreversible harm from synthetic biology to life, 

health, and society, in addition to crafting the means to enforce global governance and 

compliance [16]. 

7.1. Biosecurity Issues 

Key advancements in artificial intelligence (AI) underpinning the artificial design of novel 

biology are expected to fundamentally expand the toolbox available to synthetic biologists, and 

to radically reshape the landscape of what DNA and RNA molecules can be constructed, 

debugged, engineered, and deployed, with dramatic implications across fields from 

biotechnology to ecology to biosecurity [28]. Research focus is thus on the nascent intersection 

of AI and synthetic biology from a practical perspective, exploring state-of-the-art deep, 

reinforcement, and bio-topic-specific learning. AI capabilities are expected to embrace all 

aspects of the synthetic biology pipeline, for example becoming critical to DNA/RNA design, in 

vivo screening, engineering and assembly, biostability assessments, data and format conversions, 

design space explorations, conservativity assessments, spelling checks, and many more. The 

growing and changing threat is rather a tacit consequence of bioengineering democratization in 

general. While biosecurity policies tend to focus on wetware, they have been slow to respond to 

earlier generations of software capable of open-sourcing programs that could pose threats 

including those transforming off-the-shelf components or recipes into agents of novel disease. 

Computing advances have given rise to investment in biodata mining and the rapidly cheapening 
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acquisition, storage and analysis of biological materials information. Since the first early 

adoption of synthetic genome synthesis and sequencing, there has been awareness of the 

potential for genetic engineering capably of conceiving new biological threats [16] and perhaps 

the need to evaluate the biosecurity of synthetic biology tools and wetware by adapting dual-use 

philosophies first proposed for dry bioinformatics. Consultation with dry bio experts and their 

recent risk experience suggests that current risk evaluation and governance regimes are unlikely 

to address the new cascading risks arising from AI. This is a crowd-sourced review of previous 

academic work on synthetic biology, the limits of that work, and the first detailed scoping of the 

larger risk landscape and existing recommendations for regulators and other stakeholders. 

7.2. Regulatory Challenges 

Developing and employing AI-driven synthetic biological systems often requires the creation of 

computer-based algorithms and models that generate novel biological structures through design, 

evolution, or manufacturing pipelines. If the resulting structures were living things, they would 

be considered bio-engineered and subject to regulations. Earlier regulations covering genetically 

modified organisms (GMOs) were based on policies developed for traditional chemical 

pollutants. Indeed, for most AI-generated synthetic biology systems, it is expected that existing 

regulatory frameworks suffice. However, synthetic biology engenders a complex web of 

biological systems, some of which are computer based. Once a model or algorithm is synthesized 

in code, its behaviour is fixed unless re-engineered. As requested iterations run on-chip, changes 

are encoded in the machine’s hardware. Research subjects easily escape oversight when they 

operate independently, such as when they inhabit 'the cloud'. These differences lead to 

uncertainty about how existing frameworks work and reluctance to apply traditional rules 

without understanding the implications of their reach [16]. 

There is broad agreement that it would be wise for researchers and laboratories to become 

familiar with the underlying ethics of bio-engineered systems and regulatory frameworks before 

embarking on real-world synthetic biology projects. Write-ups to undergo a regulatory approval 

process may take months to years of effort for a single project. Thus, compliance with the 

expectations of an oversight authority may significantly constrain a laboratory’s operation. This 

concern applies to synthetic biological systems developed without considering their final design 

or behavior. The behavior of AI-generated components cannot be predetermined any better than 

the design of systems relying on the random actions of construction enzymes. Somehow, it must 

be possible to build systems that are sufficiently well constrained to satisfy the conditions of the 

oversight process, yet malleable enough to explore a diverse solution space. If intentionally 

constructed biological systems can’t easily escape regulatory oversight, halting synthetic 

biology’s exploration and engineering of living things and computer-derived systems may be 

prudent. As systems grow in complexity, escapes also grow more likely. 

8. Future Directions in AI-Driven Synthetic Biology 

There are some exciting directions for further work and research related to AI-driven synthetic 

biology. Given the rapid developments recently around large language models, there are many 

opportunities to extend the work on generative models to the domain of synthetic biology. Some 

ideas here include making them available in more accessible formats or open-source libraries and 

training them on a larger dataset or more specific data focused on sequences. Another possible 

direction is developing multi-modality models that can work with sequences, language, and 

images or video for improved performance. Increasing the breadth of DOI coverage for the 

models could allow for larger queries to be retrieved, thus providing for more diversity and 

variety in experimental conditions. Incorporating evolutionary processes into generative or 

reinforcement learning models might lead to more creative outputs. Integrating a user’s goal or 

focus into outputs would potentially provide improved guidance on experiment design. Last, 

combining the use of large language models with a network of different (D)NNs could filter 

output to be more changeable than current text-based models [16]. 
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There are many exciting prospects related to expanding individual tools for delivery into 

synthetic biology workflows. Some avenues here include providing simplified interfaces for 

more users and developing built-in experiment tracking for the tools. There is also a lot of work 

to be done on better integrating tools into workflows, either by tightly coupling DNNs with their 

frontends or with additional components that can provide context for downstream analyses. 

Having a specialized interface to check interactions is one potential avenue here. Automating 

common tasks in generative/design models would greatly improve user experience and 

efficiency. Including structural bioinformatics tools in the analysis of designs would also be 

beneficial, specifically the profiling of folding and potentially functions. Solutions should allow 

for more diversity and add a layer of robustness to projects by profiling or incorporating checks 

for different parts of designs. There are many exciting avenues for human-AI teaming, either 

through adding better context to the generative models or through creating collective intelligence 

systems, such as brainstorming or research collaboration forums. 

8.1. Emerging Technologies 

New discoveries in DNA sequencing and global genomic synthesis technologies, coupled with 

growing insights into genome biology, are empowering the development of synthetic genomics. 

The idea of synthetic genomics was first proposed over a decade ago and is referred to as the 

neural architecture search or other bio-machine-learning based methods for designing nucleic 

acid molecule. The field has since expanded significantly, in terms of both approaches and 

applications, as a result of substantial advance in biotechnologies, including genome sequencing, 

assembly, and engineering. Engineered living cells possessing synthetic chromosomes enable 

many applications. In this review, consideration with respect to the development of synthetic 

genomics is presented, with regard to how biological systems can be redesigned (namely, re-

programmed, remodeled, or expanded) in DNA sequence in an iterative fashion to achieve 

intended new functions. In addition, some considerations based on engineering principles are 

discussed, including arena selection and task specification (i.e., ―what to engineer‖), test and 

transformation (i.e., ―how to engineer‖), and chassis selection (i.e., ―which biology to rely on‖). 

Emerging applications of synthetic genomics, including creation of axenic cell factories, 

biosafety secure and programmable biomanufacturers, better drugs for treatment of diseases, and 

better understanding of transcriptome in gene expression regulation are discussed, as this newly-

emerged disciplinary course is expected to shape and revolutionize biomanufacturing and 

biomedicine [29]. The application of Artificial Intelligence (AI) to synthetic biology provides the 

necessary foundation for the creation of a high throughput automated platform for genetic 

design. Genomic DNA sequences are four bases long (A, C, G, and T for nucleotides). As one of 

the most complex natural objects, biological systems are composed of genomic DNA sequences. 

Living cells are programmed biomolecular computers, multi-agent systems, and bioecosystems 

that can adapt, learn, evolve, and behave. Cells that were once considered instinctive simple 

organisms are now believed to be capable of extensive and rich computations. This 

understanding leads to another rigorous question: can biological systems be replicated in a 

bottom up manner with AI? How can AI help to design and construct novel living systems? [15]. 

8.2. Potential Applications in Medicine 

The integration of data-driven models in synthetic biology holds great potential for biomedical 

applications. The prediction of protein functions from protein sequences greatly helps understand 

new biological knowledge. Particularly, the prediction has the potential to advance the design of 

various proteins, including enzymes, transcription factors, and antibodies. Moreover, the 

combination of DNA sequencing and machine learning can accelerate diagnosis by broadly 

detecting many mutations in diseases. Plasmids offer great potential in developing a highly 

sensitive and affordable point-of-care diagnostics method. In addition, the applications of 

bioinformatics in DNA-editing technologies, such as CRISPR/Cas, the ongoing quest to 

manipulate Nature’s toolkit for new functions is now benefiting from advances in machine 

learning. Meanwhile, the diversified new genome editing tools, improved efficiencies, and high-
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fidelity off-target mutagenesis prediction algorithms will further facilitate synthetic biology 

applications in health and biotechnology. 

The rapid advances in synthetic biology hold great promise for medicine, agriculture, and the 

manufacture of chemicals and materials. In medicine, engineered microbes are being developed 

to sense and treat diseases; synthetic SMART DNA devices are widely used for biological 

circuits and genome editing; and complex whole genomes, like that of the human genome, are 

now being written from scratch or redesigned. Synthetic biology could change agriculture by 

rewiring microbes to produce new bioprocesses and biofuels and improve crop health. 

Engineering plants for increased biomass and biofuel yields is also trending. Synthetic RNA 

devices with minimized systems are accurately controlling gene expression. DNA-encoded 

libraries of small molecules are facilitating the discovery of new drugs. Cell-free synthetic 

biology platforms are speeding up high-throughput old paradigm. Disease-drug-unrelated de 

novo sequencing DNA molecules (DNA walks) are being used for disease diagnosis and 

prognosis, efficiently and effectively [17]. 

9. Challenges in Implementation 

Research councils and institutions are unlikely to sanction restrictive curbs on frontier R&D and 

international collaboration in synthetic biology because this might slow breakthroughs in the 

area. For certain countries, AI-enabled synthetic biology is regarded as a key driver for 

development and national aspirations. Such focus on the transformative potential of AI-enabled 

synthetic biology among national policymakers could slow significant governance efforts. 

Modern AI is impressive, citing use cases in medicine, drug discovery, engineering design, and a 

plethora of other fields. The surprising combination of generative AI with a slew of new bio-

design tools in synthetic biology raises questions about what AI can build by manipulating 

biology. Given that it is complex and there as yet is too little formal, transparent research into 

measures, regulators are unsure what appropriate regulation of AI-enabled synthetic biology 

might involve. 

The focus in some countries on whether innovative bio-design tools powered by AI will 

democratise gene editing and bio-design work, and whether ―biohacking‖ with synthetic biology 

technology will be broadened into DIY biology outside biopharma and biotech. If so, whether 

biosystem engineering between machine learning and bio-foundries might spur near-term 

innovation in bio-design and bio-manufacturing platforms. It is because regulatory options are 

fewer due to unknowable innovation trajectories and AI algorithms. Business use cases also 

mention accelerating drug candidates through clustering of protein modalities or design of guide 

RNA to speed up functional profiling of kinase inhibitors each posed as paths synthesising huge 

desired product libraries to speed up serendipitous discovery. Those analytic steps are not 

appropriate jobs for AI. Generative biology might become part of the machinery of statecraft, in 

which context international efforts to curb or govern specific uses of synthetic biology by more 

risky actors or non-state actors will likely slow. [30][31] 

9.1. Technical Limitations 

The multi-step ―design-build-test-learn‖ (DBTL) cycle is the default approach for the generation 

of genetic designs in synthetic biology. Genetic designs are usually transformed into actual 

biodesigns by genetic engineering, before being implemented into living systems obtaining 

function. The function of biodesigns is usually validated through bioassays. A guard on a 

biodesign’s predicted fitness is through bioassays that may measure e.g. fluorescence levels, cell 

count, or metabolite concentrations, checking if it conforms to the predicted performance. Gibbs 

sampling has been applied to streamline the selection of designs to assess once resources are 

scarce, assigning inference probabilities of something is/was generated and using that 

information to select which action to apply next [15]. 

A series of tests are required with a growing predicate action set. Further provision is required 
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when this action set is too large, which is a common problem in biomedical reinforcement 

learning approaches. This limitation requires something much more applicable across large 

design spaces. In practice, a steerable but less optimal computational design stage is usually 

performed before wet-lab implementation, but this does not explore the designs created either 

before or after the design action sets. Exploration is generally accompanied by growing 

uncertainty in reward functions (in addition to action accuracy) bounded by something (or 

several things) known. Also, an exploitation-based algorithm for noise free Q-learning on graph 

or tree topologies can be performed in the first place; a mixture of a priori knowledge, 

probabilistic model based formulations, and relational representations might be approached to 

tackle design ambiguity. 

9.2. Interdisciplinary Collaboration 

Machine learning is rapidly evolving to become a foundational enabling technology for the 

discovery and design of new genomics-derived features to support patient-decision models and 

bioeconomy applications, due to increasing availability of high quality and voluminous 

genomics data. Meanwhile, further collaboration with clinical, omics disciplines, bioethics 

experts, and regulators is essential [32]. A major challenge for high-throughput genetics 

technologies is to identify genome-environment interactions and their effects on phenotypes as 

systems tools for precise prediction and decision making. Partnership with 100 genetic new 

model organism communities enabling new genomic platforms will help overcome this barrier. 

Through the incorporation of analyses of a broad diversity of genome, environment, 

development of targeted algorithms for sparse, holistic and scalable genomics-derived measures 

of multi-system state is anticipated. The creation of scientific and public policy friendly genome 

omics learning platforms for creating, sharing and using richly heterogeneous and integrated 

multi-scale multi-source knowledge and prediction engines will help curate, classify and clarify a 

globally inclusive new taxonomy of genomics. 

Over the past decade there has been much discussion in the genomics community about the need 

for machine learning based prediction algorithms. However, as clinical applications begin to 

enter mainstream practice, the community should recognize the need for deeper understanding of 

the preclinical factors that affect performance and reliability of such prediction algorithms, and 

machine learning approaches will need to be widely brought into and adapted for genomics 

research. All machine learning approaches benefit from optimization of training data in order to 

maximize generalizability of a prediction; machine learning methods for genomics are likely to 

benefit from understanding of when and how data generation and data modeling tasks become 

challenging and assumptions can be mis-specified. Public sector partnerships with regulators to 

better transfer understanding of preclinical factors are encouraged. 

10. Conclusion 

The integration of AI and synthetic biology can effectively accelerate the innovation of future 

biotechnologies to address global-scale challenges in food, energy, health, and the environment. 

However, to realize this goal, fundamentally novel AI-driven genomic engineering technologies 

need to be developed for designable molecular systems that can be robustly constructed, 

characterized, and deployed across various biomedical applications. While current machine 

learning methods provide great promise, urgently needed breakthroughs also include a paradigm 

shift from typical data-driven methodologies to self-evolving AI-MOGL technologies that can 

iteratively learn from progressively accumulated data, knowledge, and intelligent designs and 

consider prior knowledge-constrained design search spaces. Accordingly, dynamic open learning 

and modular knowledge graph development technologies should be proposed to enable and 

inspire evolution in knowledge representation and execution/processing modes, respectively, in 

parallel with accelerating AI-MOGL applications. These essential goals promote in-depth and 

interdisciplinary collaboration across AI, synthetic biology, and related big data sciences, several 

of which could leverage recent advances in ML, modelling, mining, and design in various 
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domains and tackle recently emerged challenges and opportunities in post-ML fields, 

computational creativity, and AI alignment issues against potential AI generated risks. 

While this review focuses on the technical aspects of its synergistic development with AI, its 

successful deployment at ever-increasing scales has far-reaching impacts on wider, inclusive, 

nondiscriminatory, and open global participation in the read-write revolution of biology. This 

multi-disciplinary endeavor over the next 20 years can profoundly democratize synthetic biology 

education and research and accelerate discoveries and innovations across academia, industry, 

biology, and chemistry by unleashing collective intelligence and wisdom. Overall, this text 

provides a new conceptual AI-driven framework, integrates most relevant state-of-the-art 

technologies, and provides important understandings and know-how for faster and deeper 

evolutionary learning and design/making of recombinant biological parts, pathways, and 

genomes than natural evolution while accelerating converging AI technologies for the rapidly 

growing biotechnology ecosystem that can address increasing global-scale challenges in food, 

energy, health, and the environment. 
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