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Annotation: The advent of massive 

data-gathering technologies offers 

unprecedented opportunities for 

exploratory, hypothesis-generating research. 

Due to the complexity of biological systems, 

such data represent an incredibly intricate 

combination of biological, technical, 

biological-laboratory, data-integration, and 

analytical noise. Consequently, to glean 

conclusions that can genuinely advance 

knowledge, the first step is to apply 

validated data-agnostic and data-driven 

clustering- and dimensionality-reducing 

algorithms to reveal the key biological 

variables contributing most, and then study 

their interaction and interdependence. 

This article presents a general multi-

omics framework that integrates gene 

expression, methylation, expression protein 

mass spectrometry, and copy number 

alteration, along with clinical follow-up, 
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patient information, key pathways, and 

gene-gene networks of involvement, and 

encompasses unsupervised algorithms 

operating to reveal features most 

informative of ovarian cancer (OC). 

Such an integrated framework, which 

can incorporate other “omics” data as they 

become available, offers multiple 

opportunities, ranging from supervised and 

non-supervised feature generation of a 

multi-omics type to integration of different 

types. It opens up unexplored avenues for 

the extraction of any type of biological 

knowledge from any type of data, 

irrespective of its discipline, bioprocess 

involved, or its dimensionality be that 

empirical time-series data, Boolean data, or 

others. 

The focus presented here is strictly on 

experimental biological data relevant to 

comprehension of a dynamic biological 

system and its discoveries of networkome, 

pathway redundancies, driver(s) under 

combinations/chains of events, or other 

outputs informative of such a dynamical 

biological system. Emphasis is put on data 

exploration methodology, priori 

requirements, types, and advantages of 

different T.sensor-linked experimental data, 

observables, and the phase space explored, 

and on how to prepare the data in a 

compatible way for ensuing analysis and 

hypotheses generation. Key aspects in terms 

of generality of application to biological 

knowledge discovery from any type of 

experimental data are also discussed. 
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1. Introduction 

Cancer is a diverse and complex disease caused by the accumulation of multiple alterations in 

genome at various levels such as DNA, RNA, protein modifications, and epigenetic changes. 

Multiple biological studies are needed to unravel the underlying complex mechanisms of tumor 

development and progression before unveiling preventive strategies or superior therapeutic 

approaches. Such omics investigations reinforce the need to search for clues across platforms or 

modalities, which are commonly referred to as multi-omics data. Over the past decades, many 

breast cancer omics studies using diverse platforms have generated an avalanche of publicly 

accessible data from a wide variety of resources. These data provide an extraordinary opportunity 

to study complex diseases integratively, and are expected to deliver new biological insights 

unattainable by single-omics studies. Complex diseases such as cancer are rarely caused by a 

single alteration in a single gene. Elucidating the underlying complex molecular basis of these 

diseases requires the combined information across multiple levels of molecular characterizations 

using genetic, epigenetic, transcriptomic, post-transcriptional, proteomic, metabolomic, and multi-

level integration approaches. 

Within the past two decades, great advances have been achieved in high-throughput technologies 

to nimble large-scale molecular level characterizations of tissues and cells. These profiled omics 

data provide molecular information on various levels of biological hierarchies, and are expected to 

reveal the molecular mechanisms from the bird‘s-eye view. Consequently, increasing efforts have 

been devoted to adopt integrative multi-omics data analysis approaches or techniques to fulfill this 

expectation. The omics data under investigation are described, a general bioinformatics 

framework developed for integrative multi-omics data analysis, and the expected impact of this 

framework on breast cancer research are discussed on multiple respects. The use of artificial 

intelligence (AI) based systems biology approaches to analyze integrated multi-omics data is 

summarized. The general bioinformatics framework consists of three major parts, namely, pre-

processing or data cleaning, analysis, and post-analysis. First, multi-omics data cleaning 

essentially includes genomic data transformation, filtering of noise, and imputation of missing 

values. After data cleaning, biological data integration is performed to identify different types of 

biologically relevant associations among molecular entities across platforms or modalities. On the 

basis of identified relevant associations, various models are designed to analyze the integrated 

multi-omics data, which is followed by post-analysis of the results of model optimization [1]. 

2. Understanding Complex Diseases 

Complex diseases such as cancer are difficult to diagnose, and machine learning approaches are 

increasingly used to analyze multi-omics data for early diagnosis of diseases. In the past decade, 

knowledge of cancer-related dysregulated processes and aberrations has become increasingly 

comprehensive, and diverse data have been acquired by high-throughput systems biology 

platforms. Cancer biology is highly complex and dynamic, with multiple pathogenic processes and 

various forms of molecular aberrations including DNA mutation, copy number variation, and 

dysregulation of transcription and protein abundance. Dysregulation of normal genes occurs 

across all catalogue levels via different aberrant mechanisms, and most of the complex diseases do 

not arise as a consequence of failure of a single molecular entity. Rather, they can be viewed as 

system-level disturbances of biological constellations formed by interdependent molecules, 

pathways and processes [1]. Undoubtedly, the incorporation of knowledge from different ―omes‖ 

is necessary to gain broad insights into the molecular paths and aberrant processes leading to 

disease, and thus to the identification of targets for intervention. However, using multi-omics data 

in a ―horizontal version‖ is challenging. 

Multi-omics studies comprise multiple data types, different natures of data, and different platforms 

of systems biology. Each type of omics data is sufficiently heterogeneous, and the scale and 

dimensionality of high-throughput biological data have exponentially increased. For cancer, a data 

repository known as The Cancer Genome Atlas has been developed since 2006 [2]. Data-driven 
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inference of cancer-related aberrant mechanisms and processes requires the coordination and 

incorporation of a large number of high-throughput cancer data across several omics and non-

omics levels. Here, a bioinformatics-oriented conceptual framework to support public efforts as 

well as individual research work towards the integration of large multi-omics data is presented. A 

data acquisition platform is developed to enable ―vertical‖ integration of multi-omics datasets 

from different resources (types of disease, organ sites, data level) with detailed mapping of data 

provenance. 

2.1. Definition and Characteristics 

Multi-omics, a types of omics that integrate two or multiple levels of omics datasets that consist of 

high-throughput and large-scale information and analytics for particular biosystems [1]. Typically, 

a dataset consisted of one type of omics dataset, e.g. genomic data, transcriptomic data, proteomic 

data or metabolomic data was referred as single-omics dataset. In contrast, multi-omics dataset or 

data is composed of omics that contain different (typically two) types of omics datasets. For 

example, one type of multi-omics dataset is composed of transcriptomic expression data and 

genomic mutation data. Various omics-based analyses of biosystems data have been extensively 

studied to gain novel biological insights, particularly DNA/protein/gene mutations, or variants 

impacting aberrant molecular functions and properties driving dysregulation of cellular functions, 

preclinical models and drug responsiveness, or therapeutic/patient stratification of cancers. 

Recently, the integrated analysis of multimodal biomedical data by data-mining and 

bioinformatics tools has gained increasing popularity and importance to provide a system-level 

view to understand complex biological systems. Cancer is a complex disease involving the 

dysregulation of genes via multiple mechanisms. It is unlikely that cancers will be fully explained 

by solely one type of data (or omic level, denoted as single-omics). Conceiving the hypothesis that 

by combining different omics, the discovery of novel bio-molecular associations with cancer-

related phenotypes will be increased, joint analysis methods for integrative modeling are 

developed. By investigating functional relations among genes associated with the same disease 

condition, the knowledge for developing more accurate disease-relevant prediction models will be 

further gained [2]. 

2.2. Current Challenges in Diagnosis 

The development of effective biomarkers for the early diagnosis of complex diseases is one of the 

biggest challenges faced by researchers in the field of healthcare and medicine. Advances in 

several domains, including the introduction of next-generation sequencing techniques in 

genomics, the development of advanced imaging techniques in imaging ‗omics' (e.g., medical 

imaging), and the development of techniques for molecular pathology and proteomics, have 

increased the availability of different types of ‗omics' data for biomedical studies. Novel multi-

modal and multi-‗omics' data integration strategies are, therefore, expected to play a key role in 

patient clinical management in the coming years. It has helped increase the accuracy of diagnosis 

and the efficacy of therapy [3]. Machine learning (ML) and artificial intelligence (AI)-based 

approaches have also been developed to assist multi-‗omics' data integration in biomedical 

research. Generally, the main aim of this systematic review is to advocate for the adoption of 

multi-‗omics' data integration along with AI-based approaches. In addition to a description of the 

current state-of-the-art models and methods, challenges and future research directions related to 

this are also presented in this section. As an advanced approach to integration, analysis, and 

prediction of multi-omics data integration, the use of deep learning (DL) models and its variants is 

also discussed [4]. 

Despite the promise of the technological efforts and advancements, a number of challenges still 

remain in the development of effective biomarkers for the early diagnosis of complex diseases. To 

help researchers better understand the situation of the field, this section presents a detailed view 

about the current challenges in the development of effective biomarkers for the early diagnosis of 

complex diseases. It has been organized under four main categories (general challenges, omics 
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data challenges, cross-species challenges, and machine learning challenges), which consist of 

diverse challenges. The discussion of how these challenges could be addressed is presented in the 

subsequent section (Section 3). This section also presents questions that could assist researchers in 

identifying promising research topics related to the current challenges of the field. 

3. Overview of Multi-Omics Approaches 

In recent years, there has been an increasing recognition of the complex interactions among 

biological systems. Novel technologies like next-generation sequencing, transcriptomics, and 

high-throughput proteomics enable a simultaneous measurement of various classes of molecular 

species in an ensemble of samples, allowing the picture of biological processes at a systems level 

to be interpreted. Nevertheless, each layer of analysis produces abundant, complex, and diverse 

data, hindering their effective extraction of biological knowledge, which cannot be approached 

with any traditional analysis by an isolated domain. A growing appreciation of the combined 

information of diverse data sources laid the foundation for the analysis at system-wide levels [5]. 

Multi-Omics data integration emerged as a fresh paradigm to explore the new insights into normal 

physiology, pathology, and treatment of distinct diseases, well beyond mere correlations and 

phenotyping in the single-omics era. This field of research is becoming an important focus of 

investigations. 

Recent technological advances yield high-throughput platforms for the efficient accumulation of 

immense amounts of information across multiple omics levels. Multi-omic refers to the various –

omics approaches deployed to observe the molecules of interest that showcase the systems biology 

of organisms – from genes to the bioinformatics underlying their interactions. The heterogeneity, 

complexity, and largeness related to multi-omic data accompanied by various bioinformatics 

analyses, corrections, and modeling ensure a rapid mining of large-scale and novel insights from 

biology, ecology, agriculture, and medicine. Although researchers work with assorted modalities 

of analyses, such as statistical approaches, machine learning, systems approaches, global 

bioinformatics databases, and network-based conceptualization of integrative biology, this paper 

provides an overview of key aspects and recent advancements for an accessible reference to this 

swiftly evolving field [2]. The sources of multi-level omics data integration, the corresponding 

bioinformatics workflow, a summary of key concepts and methods for data analyses, and potential 

biomedical applications are outlined and illustrated with several real-life examples. Finally, 

challenges, recent advances, and perspectives on future developments and applications of multi-

omics data integration are discussed. 

3.1. Genomics 

More than 50 years ago, the Human Genome Project (HGP) revolutionized biology and medicine 

by developing new techniques for large-scale sequencing and analyzing genomes. The past few 

decades have seen an explosion in rapidly decreasing sequencing costs, with the rapid 

proliferation of massive genomic sequence datasets made in public archives. The combination of 

sequence data with functional genomics and other related data, otherwise known as multi-omics, 

represents the next frontiers to understand the genome. The genomic era poses monumental 

opportunities for the field of systems biology to revolutionize its approaches to patient-based 

precision medicine, as well as for high-quality Artificial Intelligence (AI) systems [2]. 

The dynamics of multifactorial diseases systems at the molecular, cellular, organismic, and 

societal levels are understood to be better represented by the networks of their biomolecular 

perturbations than by the mechanistically simpler linear mechanisms discussed above. Multi-

omics technologies are key to providing a broad view of the biomolecular activity of a disease 

system. Nevertheless, they only uncover some of the associated biomedical systems while leaving 

many others unknown. These unidentified biomedical systems may hold key pieces of information 

in understanding the complex nature of diseases. Unsupervised AI approaches have been 

developed to mine unseen networks expressed in multi-omics. For instance, fuzzy clustering 

techniques have been applied to decipher subtypes of human gliomas. Multi-omics data, along 
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with patient-specific clinical traits, have been demonstrated to improve patient stratification and 

better prediction of clinical outcomes. Integrative networks are formally learned from the multi-

omics data, patient-specific clinical traits, and discrete or continuous network properties, which 

are used to train interpretable and predictive support vector machines classifiers. 

3.2. Transcriptomics 

The transcriptome is defined as the total set of RNA transcripts or gene products in a cell, which 

refers to the set of messenger RNA (mRNA) molecules in the cell [6]. Transcriptional control of 

gene expression is an important physiological process and plays a crucial role in regulating cell 

fate. In this section, multi-level information on the transcriptome, such as differential expression, 

alternative splicing, and large non-coding RNA, is presented. Furthermore, multi-omics biomarker 

identification methods of transcriptomics data, such as ontology-based and Venn diagram-based 

analyses, and the databases containing transcriptome data used by biologists are also introduced. 

The transcriptome contains the full range of mRNA molecules expressed by an organism. The 

transcriptome's three major components include: coding RNAs (protein-coding mRNAs), non-

coding RNAs (ncRNAs), and rRNAs, in which genes and mRNAs are 4-7 kb long and composed 

of 3 exons on average; the number of alternative spliced isoforms per gene is 12,396 and the 

number of protein domains is 5,652. Understanding the transcriptome is critical to understanding 

the biology of an organism and has important implications for modern biomedicine. Currently, the 

transcriptome provides us with an appropriate time window in which various cellular states can be 

selectively captured. With the advances in sequencing and bioinformatics skills, understanding 

and capturing the temporal, spatial, and cell-type-dependent landscape of the genome has become 

feasible. A snapshot of the levels of each transcript in the transcriptome at a specific time point in 

a typical organism is called transcriptome profiling. Currently, several transcriptome profiling 

platforms, including conventional bulk mRNA sequencing, planar and spherical microarray 

technology, and no-lyse sequencing are widely used. 

However, traditional transcriptome sequencing faces difficulties in routine applications in clinical 

and biological studies, including, a lack of a standardized library construction protocol, an ill-

defined bioinformatics platform, and a price disadvantage. To resolve these limitations, a new 

sequencing platform, LUNA Sequencing, was developed, which includes a reverse transcription-

free, constant-timing, constant-volume, and constant-temperature real-time amplification 

mechanism, and multiple channel Macshyny (M) chips to enhance multiplexing of up to 10,000 

channels, with obtained raw sequences of 450 nt. This high accuracy of LUNA seq-based mRNA 

sequencing, which is superior to bulk mRNA-Seq, planar mRNA transflective phase-array 

microarray, or nth-geometry multiplex detection microchip technology, was applied to obtain 

transcriptome profiles in a solid sample, highlighting its robustness in a-few-cell analysis. 

3.3. Proteomics 

Proteomics provides a powerful platform through the identification of proteins as complex 

disease-associated features to be used for prediction, diagnosis and now drug development, 

especially in conjunction with genomic and metabolomic features. However, the slow production 

and expensive analysis of large plasma proteomes drove continuous efforts towards simpler 

feature sets. The potential of machine learning to harness the biology intrinsic to a vast number of 

enzymatic reactions provided a way forward. Protein biomarkers for complex diseases were 

comparatively described, with a focus on proteomics analyses of samples from the UK Biobank. 

Failure to make predictions into clinics is also discussed, providing recommendations for 

impactful future research. Abundant and accessible population-wide genomic, proteomic and 

metabolomic data makes it feasible to investigate prediction of complex diseases based on the 

cross-comparison of omic features with machine learning. In addition, the widespread availability 

of large-scale data creates a new challenge: As the dimensionality of available features is growing 

by an order of magnitude, their large-scale cross-comparisons must be interpreted with care, 

taking into consideration attributes intrinsic to specific omic pairs and the machine learning tools 
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available to analyse them. One set of features that has so far seen less application are proteins, 

which are the products of genes and often the output of cellular modulation. Thus, the 

investigation of whether accounting for the biology of proteins could improve the prediction 

performance of any of the above disease attributes is relevant [7]. 

Models informed of genomic and metabolomic features were described to predict complex 

diseases, and comparative analyses exposed stroke, type 2 diabetes and atrial fibrillation, 

consistent with complex diseases involving multiple causative factors. Data from proteomics 

analyses of UK Biobank participants were presented, with an emphasis on predictions based on 

robust analyses across masses, retention time and intensities. Such observables would allow for 

simpler, more accurate and therefore more reproducible interpretation, applicable to future plasma 

peptidomics studies as well. Direct comparison of the potential of proteins, metabolites and 

genetic variants to predict complex diseases based on their relative cross-comparison with omic 

approaches. The potential of the proteins alone to provide accurate predictions of complex 

diseases was thus verified, especially synaptic potency and blood-spinal cord barrier-related 

proteins. 

3.4. Metabolomics 

Metabolomics is the study of quantifying metabolites and mapping their complex interactions 

within this domain, which is comprised of the total set of small molecules present in cells, tissues, 

organs and biological fluids. It is the final downstream component of the biochemical stages, 

involving genes, RNA, proteins and environmental factors, ultimately yielding phenotypic 

changes in an organism. Since metabolism crucially involves important physiological processes 

that diseases often alter, metabolomics analyses can be used to detect disease-driven changes from 

the levels of thousands of metabolites, enhancing current diagnostic methods and discovering 

specific, perturbed metabolic networks. The advantage of using metabolomics is derived from its 

provision of a functional readout of the physiological state of an organism. Importantly, 

metabolomics may hold the key to tackling the challenges associated with complex diseases, 

which are caused by an intricate interplay between an individual‘s genes, environment and 

lifestyle. Most diseases lie under this umbrella term, which include cancer, cardiovascular disease, 

diabetes, arthritis, obesity and dementia. Rather, expression of certain correlational genes may 

increase risk of contraction, but does not guarantee incidence; instead, toxins from the 

environment, drugs consumed over one‘s lifetime, poor diet and lack of exercise would likely lead 

to disease onset. Therefore, researchers of complex diseases must identify methods to overcome 

the challenges of deciphering the quantitative influence of risk-associated genes in comparison to 

non-genetic factors. Metabolomics offers a solution to this by allowing the individual influences 

of genetics, environment and lifestyle to converge onto the metabolome as a terminal downstream 

domain of products. This holistic approach allows metabolomics researchers to discover 

biomarker signatures that capture the multiple major factors driving the complex disease. These 

panels can help to diagnose at-risk complex disease patients and predict onset years before 

symptoms arise using prodromal metabolomes. Research for metabolic marker discovery spans a 

fast-growing array of prevalent disease areas, such as breast cancer, osteoarthritis and 

Alzheimer‘s. Although rich quantitative datasets may contain valuable information, the extents of 

their utilities are limited by the appropriateness of the selected statistical and computational 

methods of analysis. Since these datasets contain hundreds of features, the value of an appropriate 

method would be derived from its ability to account for the effects of each metabolite in isolation, 

and in a multivariate manner with consideration of interaction-based effects. Thus, while recent 

advancements in analytical chemistry techniques have made it possible to quantify hundreds of 

metabolites within a reasonable time frame, these techniques must be coupled with fitting 

statistical and computational algorithms to translate the data into a practical application in the 

clinic. Unfortunately, the majority of metabolomics studies historically have not employed 

optimal methods for biomarker discovery, perhaps due to a lack of statistical and computational 

expertise among metabolomics researchers. Today, the existence of over 100,000 metabolites in 
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the human body is reported. As analytical methods improve, the quantifiable metabolome and its 

associated datasets will continue to grow, raising the relevance of powerful, heuristic 

computational methods to the forefront. [8][9][10] 

3.5. Integrative Analysis of Omics Data 

The application of integrative analysis in multi-omics data is growing rapidly. These multi-omics 

data sets help identify and provide insights on the disease and stratified samples, pathways, and 

predictors of diseases. In recent years, more integrative analysis applications have been reported, 

showing its growing popularity in the diagnosis, prognosis, and treatment of diseases [5]. 

Personalized medicines leverage multi-omics data to provide insights on the personalized disease 

mechanism and identify personalized driver genes. For example, a study assessed the impact of 

tumor-mutated alleles on the functional activity of proteins. This approach identified and 

prioritized 5 driver genes in this patient, which were validated to play a crucial role in tumor cell 

growth. Other studies have developed methods to leverage multi-omics data for drug response 

prediction in diseases. Clinical assessment predictions combine the physician‘s assessment and the 

omics data to predict treatment outcomes for depressive disorders. Under the evaluation of real 

clinical situations, their workflow predicted the therapeutic response by integrating mutation and 

metabolomics with clinical observations. This integrated approach harmonizes clinical and omics 

data and can provide novel therapeutic interventions for diseases with complex phenotypes. 

Cancer is a complex and pervasive biological phenomenon involving the dysregulation of genes 

via multiple mechanisms. Oncogenic alterations may involve single genes or multiple alterations 

affecting distinct classes of genes [1]. This is unlikely to be fully explained by a single data type. 

By combining different ―omes‖, researchers can discover novel bio-molecular associations with 

disease-related patient phenotypes. For example, the genomic and transcriptomic composition 

could provide complementary and cross-validation insights into the tumor biology and could 

potentially present a more comprehensive profile of the multi-processes of tumorigenesis. In a 

tight collaboration with a data-generating institution, an integrative framework Data & Analytic 

Integrator (DAI) is developed to explore the relationship between different omics via different 

mathematical formulations and algorithms. DAI is underpinned by a combined data & analytic 

integration approach. Input data sets of different ―omes‖ are first lighter-fined into a collection of 

data sets, allowing detailed personalized exploration of sub-networks using other network 

modeling tools or software. 

4. Artificial Intelligence in Biomedical Research 

Artificial intelligence (AI) has profoundly impacted numerous facets of society, including how 

data is created, processed, and used to make decisions in biomedicine. AI-enhanced solutions, 

particularly those based on deep learning, have opened up new horizons in biomedical research 

and discovery by providing sophisticated analysis and modeling capabilities. Several strategies for 

employing machine learning (ML), bioinformatics, and systems biology to integrate large 

quantities of data across multiple levels of biological processes have recently become accessible 

and applicable to biomedicine fields. Data-driven approaches capable of learning from high-

dimensional data at the cellular level and predicting their disease associations at the tissue level 

have been widely adopted in drug development. AI-based approaches will likely be increasingly 

crucial to biomedicine as this paradigm shift in science and drug discovery continues with the 

faster and larger growth of biomedical data in the future [2]. 

AI has become a basic and key technology for drug discovery, meaning every striker would 

inevitably use such technologies and platforms. The tutorial covers AI and its application scopes 

in the industry and academia, focusing specifically on strategies and tools for analyzing 

multiomics data with AI technologies and effective cooperation with non-AI scientists. 

Multiomics approaches and their applications in biomarker discovery and drug testing. AI-based 

deep-learning methods enable biomarker identification and drug response prediction from 

multiomics data. AI-based multiomics data analysis tools provide additional value in case studies. 
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The scholars anticipate that knowledge learned from this tutorial with hands-on experience will 

broaden the audience‘s perspectives, helping them explore innovative ideas for AI, multiomics, 

multimodality, and other techniques in future discovery. 

4.1. Machine Learning Techniques 

Over the years, numerous machine learning approaches have been developed for the analysis of 

multi-omics data. This section discusses the major categories of machine learning whereby 

representative methods for each category are provided. Under each category, a detailed analysis of 

the method‘s background and its cancer-related applications is conducted. Moreover, a summary 

table of detailed works is included to provide a comparative view of existing methods‘ features, 

advantages, and limitations, which can be helpful for researchers in selecting appropriate methods 

for their research needs. 

With the extraordinary success of deep learning in computer vision, natural language processing, 

and many other machine learning-oriented tasks, deep learning-based methods have also been 

developed for the analysis of multi-omics data, including multi-modality gene expression, single-

cell RNA sequencing and spatial transcriptome. Most efforts focus on developing novel neural 

architectures for integrative analysis tasks, which usually require a large amount of training data. 

Exploring more machine learning models for multi-omics data, especially conventional 

approaches, is an open challenge but essential for real-world applications where the current data 

size is often small. Since many conventional approaches can be regarded as a simplifying 

assumption on the latent structure of the target domain, the theoretical foundations of conventional 

approaches should also be established for the integration of multi-omics data analysis. The latest 

advances in graph neural networks may hold promise [2]. 

Together with the International Life Sciences Institute (ILSI) have developed a research 

framework for risk assessment of the potential adverse effects of plants produced by new 

biotechnology methods. To assist in implementing the research framework, a decision-support 

tool called Nidus was developed. Available human-health, environmental, and agronomic 

decision-modifiers were digitized into a user-friendly format with guidance on how to locate, 

assess, and utilize the data. The development, implementation, and illustrated use of Nidus offers a 

replicable approach for agribusinesses, NGOs, and government agencies to assist risk assessors 

worldwide in fulfilling their responsibilities to protect human health and the environment in the 

age of agricultural innovation. 

4.2. Deep Learning Applications 

Deep learning (DL) health informatics applications review is presented here, focusing on the 

supervision of extracting multi-layer and multi-resolution parameters in the field of 

neurodegenerative diseases (ND). The high-level learning techniques that have been proposed in 

ND have been classified into math/statistics, signal processing/image analysis, knowledge 

representation/graph theory/network science, and DL. They involve many possible data attributes. 

Examples of their applications to ND retrieval and classification of medical imaging, genetics-

sequencing, radiomics, E-EG/MEG signals, and texts are presented. While matchmaking classic 

attributes of data analysis methods and data attributes clarifies what can be analyzed with each 

method, building DL systems is not easy for biologists due to their complexity. Therefore, such 

habitats are also identified with state-of-the-art off-the-shelf turnkey software tools [11]. In 

particular, deep learning (DL) and artificial intelligence (AI) approaches that have been developed 

for the fully intelligent analysis of multi-omics and multi-features of complex cancers are 

reviewed. The public resources available for AI-based cancer multi-omics systems biology studies 

are compiled, as well as benchmarking guidelines. Furthermore, the most significant challenges 

and unmet needs in this emerging field for future development and use are highlighted [2]. The 

complexity of cancer in the context of systems biology is discussed, followed by descriptions of 

the state of data generation and systematic analysis applicable to cancer at multi-omics levels. A 

framework is proposed that incorporates emerging AI- and graph-based technologies for systems-
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level interpretation and multi-omics integration of the cancer-wide human molecular constituent, 

as well as fundamental considerations for robust application. Finally, the impact that applications 

in this field can have on precision cancer prevention and treatment is illustrated with a few 

examples from the ongoing research efforts. Given the rapid development of big data application 

technology and the need for effective prevention/therapeutics for all kinds of cancers, a promising 

future is envisioned. [12][13][14] 

4.3. Natural Language Processing in Health Data 

Natural Language Processing (NLP) methods can convert the unstructured text notes in electronic 

health records (EHR) to structured data fields. These methods can help advance clinical decision-

making for chronic diseases by facilitating cohort identification for ongoing monitoring outside of 

clinical trials. A generalizable approach was developed, successfully extracting variables 

underlying treatment and clinical outcome in nephrotic syndrome from EHR free text notes [15]. 

This proof-of-concept study serves as a use case for broader applications of NLP in studying 

chronic diseases. NLP offers potential for improved risk stratification, cohort identification, and 

outcome assessment, yet it has not been applied extensively to offer pseudonymous cohort 

information which can be made publicly accessible. 

Text notes resulting from clinical encounters, discharge summaries, pathology reports, imaging 

readings, and other narratives often contain information consistent with intent of clinical trials. 

Electronic health records (EHR) for chronic diseases – settings of treatment failure or disease 

progression – can mature for years, generating large text corpuses amenable to mining. Natural 

language processing (NLP) provides methods to convert unstructured text to structured fields and 

standardized entity types. NLP applications on EHR are rare with respect to issues of intervention, 

clinical context, and disease phenotyping. Approaches to health text mining, event timeline 

construction, extraction of cancer quality-of-life surveys, and systematic use of process mining 

have emerged, yet research areas remain wide open. NLP of EHR notes has potential for improved 

trial feasibility, population robustness, and targeting of higher risk patients not currently in 

interventional settings [16]. 

Complex chronic diseases – computational frameworks for text mining could be built based on 

freely available resources such as administrative datasets and patient-generated health data. 

Clinicians and researchers could refine relevant variables leading to datasets clearly demonstrating 

effectiveness of a priori targeted therapy strategies. This unprecedented access to clinical 

evaluation and learning data could inform care paths tailored to differences in intervention type, 

risk factors, and patient profiles. In trials on chronic diseases to date, routine text notes in free 

form narrative sometimes asymmetrically disclosed to patient care could be considered a valuable 

source for standardization and compliance reasoning analysis. 

5. Biomarker Discovery Process 

The Biomarker Discovery Process (BDP) is essential in biomedical research. It aims to find 

candidate biomarker molecules that can subsequently be validated and used in clinical practice for 

patient stratification in a precision medicine context. Robust bioinformatics pipelines have been 

established that take some high-dimensional omics datasets and yield interpretable result lists of 

biomarkers and accompanying bioinformatic analyses [17]. These pipelines are usually based on 

meta-analytic statistics. They reproduce essential steps in most hands-on pipelines in painstaking 

detail and shine light on potential pitfalls. Nonetheless, they cannot be used in an ―all-in-one‖ 

fashion or by the majority of life scientists yet. 

Academic researchers in biomarker discovery studies for patient stratification using omics data are 

slower than vendors to seize the power of AI-enhanced solutions. This is partly due to the fact that 

new machine learning approaches are steeped headlong into established but deficient 

bioinformatics tools. In organizational terms, the AI-olution space is fragmented, the integration 

costs between providers are significant, and the availability of user-friendly, open-source stand-



American Journal of Biology and Natural Sciences                                                                                   Volume:2 | Number:5 (2025) May 201  

 

alone software is limited. However, niche open-source efforts like the ―SwathX‖ offer untapped 

opportunities for scientifically painting a thousand colors of patient profiles, and this rich palette is 

still waiting to be distributed to the art sectors of the biomarker world [18]. With the increasing 

scale, complexity, and integration of omics data, conceptual clarifications, user-friendly software, 

and appropriate example use cases are still in high demand. Closely associated priorities include 

fostering towards explainable AI-augmented solutions designed for high-dimensional 

heterogeneous omics input, and propensity to adopt more open-source software that is responsive 

to the shifting landscape of multi-omics. 

5.1. Identification of Potential Biomarkers 

The identification of potential biomarkers of complex diseases has proven a daunting task due to 

the data gap as well as the complexity of both the biomarker and the disease [7]. Early on, 

candidate biomarkers were typically followed up based on the scientific literature, clinical 

experiences or selected from multiomics analyses based on simple statistics such as univariate p 

values. The cleared path for prioritising candidates was left unexplored. Here, this gap is filled 

with an interactive online tool. Analyses have identified 90 million common genetic variants, 

1453 proteins, and 325 metabolites across 30 complex diseases, and systematic comparisons have 

been made of the individual potential of both the candidate sets and the predictor variables. Since 

complex diseases are characterised by both complexities in the disease and in the biomarker, 

machine learning has been used as the preferred methods to build a pipeline for the evaluations. 

It was found that the cohort size balanced the need for hue, diversity and coverage of the candidate 

biomarker datasets. Consequently, UK Biobank was chosen with some 1.7 million genetic 

variants, 1453 proteins, and 325 metabolites involved in the incidence and prevalence of broad 

range of complex diseases. UK Biobank has recently made extensive phenotypic and multiomics 

data available to researchers. This publication includes a major part of these newly obtained data 

from both the cohort and the experiments for the benefit of the research community, including the 

on-line tool for biomarker prioritisation. 

With the rapid development of data generation technologies, the amount of omics data concerning 

human health and disease is growing exponentially. Meanwhile, healthcare is concurrently 

shifting from intervention towards prevention with further patients‘ stratification per case and 

subsequently to tailor made intervention. The escalating needs of biomarker discovery to assess 

risk, select patients and monitor predictive intervention have confronted trials with omics data 

generated as an obverse. Genomic studies have buoyed up expectations by finding high 

throughput, low cost and commercially viable variants. However, hundreds of thousands of 

candidate variants can be primitively filtered down by selection based on the literature or 

biochemical pathways, yet the odds of being diagnostic are extremely slim. 

5.2. Validation of Biomarkers 

Recent advances in omics technologies offer exciting new opportunities for biomarker discovery. 

Omics data have proven successful for patient stratification in clinical applications related to 

oncology, where the complexity of tumor mechanisms has inspired multi-omics biomarker design 

[17]. Unraveling the underlying mechanisms of complex diseases is fundamental for reaping the 

potential of multi-omics data for biomarker discovery. Patient stratification necessitates tight 

collaboration of medical research, applied life science and bioinformatics, as well as orchestration 

of diverse data acquisition and analysis methods. Key elements for involvement of academia, 

industry and clinical partners in collaborative research are discussed, alongside the future 

challenges and opportunities of biomarker discovery for patient stratification using multi-omics 

data. 

While most clinically validated biomarker models derived from omics data have been developed 

for personalized oncology, first applications for non-cancer diseases show the potential of 

multivariate omics biomarker design for other complex disorders. Distinctive characteristics of 



American Journal of Biology and Natural Sciences                                                                                   Volume:2 | Number:5 (2025) May 202  

 

prior success stories enable the derivation of specific recommendations for future studies. Five 

cancer biomarker models are discussed and show that reverse engineering of designs for complex 

macromolecular samples can successfully characterize the molecular features of polygenic 

diseases such as cancer. However, the competitive advantage of a stratification approach 

ultimately hinges on genuine understanding of disease-related processes. Given the knowledge 

gaps and the availability of new multi-omics and AI technologies, ample opportunities for 

discovery currently arise. 

5.3. Clinical Utility of Biomarkers 

While tremendous advances have been made in knowledge and rapid assay developments for 

omics profiling, there are still significant barriers to clinical translation of candidate biomarkers, 

especially for complex diseases [3]. These barriers include (a) a lack of standardization and 

rigorous assessments of assay features like specificity, sensitivity, dynamic range, and 

reproducibility, which is particularly relevant for ―omics‖ techniques, owing to the complexity of 

the sample processing protocols and the inherent heterogeneity of biological specimens; (b) 

difficulty in reconciling the often modest performance of potential classifiers and their limited 

clinical utility; and (c) the failure to provide actionable insights that lead to clinically meaningful 

outcomes. Broadly speaking, the vicious cycle of desperate need and disappointingly few 

successes largely arises from a lack of rigorous statistical underscore at all steps of the biomarker 

discovery cycle and broad over-reliance on a small number of methods that have quality control 

and statistical interpolation with ad hoc selection of methods. Therefore, success in continuously 

diving deeper into the biomes is likely to depend critically on increased scrutiny and rigor for such 

methods. New biomarkers need to be developed utilizing tailored assay technologies and subject 

to rigorous and thorough evaluation. A multi-pronged approach is required that will take into 

account the high level of complexity and uncertainty in the pre-analytical, technical, and 

biological data. Standards and controls shall need to be developed that will enable and facilitate 

the generation of high-quality data by all parties. Bioinformatic and statistical methods need to be 

rigorously assessed so that the sensitivity and specificity of biomarker signatures are optimized. 

Rigorous validation of biomarker assays through clinically relevant mechanistic studies shall be 

key for translation. 

6. Case Studies in Biomarker Discovery 

Advancements in multi-omics data acquisition technologies together with machine learning-

powered analytical methods have motivated the development of a novel generation of integrative 

biomarker discovery studies. While most of these studies focus on patient stratification, only few 

are concerned with the investigation of complex diseases and associated diagnostic biomarker 

signatures. Among a large number of publications dealing with assay, method, or test development 

for the measure of circulating biomarkers, only a small part actually identifies and characterizes 

novel peptide, lipid, or metabolite biomarkers for diagnostics, and presents first validation studies. 

Many groups are investigating biomarker panels for differentiated diagnoses of complex diseases. 

This offers the chance to enlarge available resources regarding biofluid biomarkers, broaden 

perspectives on the design of biomarker discovery studies, identify success criteria, and facilitate 

collaborative view on developments in the field [17]. Three specific disease areas were targeted 

for the selection of illustrative case studies, namely dialysis-related complications, metabolic 

disorders leading to obesity, and liver disease. Subsequently, a further limitation was applied to 

consideration of human studies only, which focus either on untargeted multiplexed omics 

approaches or inferential proteomics studies. Finally, some high-profile papers with large data sets 

were prioritized also to highlight the challenges in the field that arise with such resource 

demanding instrumentation. For each selected case study a general introduction is given together 

with an overview of devices, omics platforms, and assays used therein. Next, the key elements of 

sample preparation, analysis, and data pre-processing are reviewed while carefully addressing 

specific considerations not typically propagated in details in earlier work. Subsequently, the 

integrative analysis of multi-omics data and modelling of discovery biomarker panels are outlined, 
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followed by a description of the validation procedure employed in the respective study. Finally, 

each case study is concluded with a discussion of key insights and challenges encountered. 

6.1. Cancer Biomarkers 

An essential challenge of cancer research is identifying cancer type without the need for patients' 

biopsy. Considered classically as cell-type-specific, distinguished noncoding RNA and protein 

biomarker types deliver individual signatures that are highly devoted to corresponding cancer 

types, conferring robust discrimination against molecular and clinical challenges. Here, a 

noncoding RNA-based cancer biomarker panel together with a machine-learning neural network is 

presented to classify RNA-sequencing data from different cancer types. Benchmarked on 163,859 

samples of 33 cancer types, the deep learning neural network sufficed to achieve state-of-the-art 

discrimination of 1,442 RNA-sequencing data of conditional NN- and PCR-measured forms, 

outperforming the most feature-rich present biomarker type. Comprehensive runs of equal 

conditions supported a pan-cancer approach, and a stage-specific biomarker subset competed 

computationally with default essential, powerful noncoding RNAs, microRNAs, and proteins. 

With the engagement of the tested old stock market market indices, successful multi-asset class 

detection was drawn [19]. 

Machine learning can analyze biomedical big data generated from nowadays advanced 

technology. As an essential subfield of artificial intelligence, computer science, and data science, 

it aims to replicate and simulate the human brain to solve complex problems. The strength of 

machine learning lies in automatically recognizing the pattern of new, unseen data that were not 

provided earlier. It can also enhance the understanding of biological systems by integrating, 

analyzing, and visualizing big datasets and screening potential drug targets [2]. This presents an 

account of machine learning methods and tools applied to analyze multi-omics big data in cancer 

research, including clinically predictive algorithms to access personalized therapies and genomic 

epidemiologic studies supporting precision prevention strategies. 

6.2. Cardiovascular Disease Biomarkers 

Understanding the genomics of cardiovascular diseases (CVDs) is a relatively new field of 

research, yet the pressing need for such investigations to aid precision medicine is well-

recognized. Given the intricate characteristics of CVDs, it is important for scholars and medical 

practitioners to make new discoveries regarding CVDs that lead to personalized interventions, 

even for patients suffering from similar disease classes. The appropriate utilization of machine 

learning (ML) methodologies can yield novel understandings of CVDs. Important insights include 

enabling improved personalized treatments based on predictive analysis. In this model, newly 

utilized transcriptomic biomarkers with strong evidential significance are anticipated to exhibit 

additional power for publicly available gene expression datasets. A series of transcriptomic 

biomarkers for the discovery of CVDs were domestically studied and advanced to this point, yet 

evidence across further cohorts remains elusive [20]. 

In this study, a novel combination of traditional statistics and cutting-edge AI/ML techniques was 

proposed to identify significant biomarkers by analyzing the complete transcriptome of CVD 

patients. First, gene expression data from 1,052 patients, encompassing complete data and deep 

clinical features, were accessed. After robust gene expression data pre-processing, three statistical 

tests were utilized to assess the differences in transcriptomic expression and clinical characteristics 

separately between healthy individuals and CVD patients. To help facilitate the development of 

unbiased models, the transcriptomic features were categorized. Then, using the recursive feature 

elimination (RFE) classifier, additionally termed the Random Forest model, the transcriptomic 

features were modeled independently to assign rankings based on how they relate to the case–

control variable. The top ten percent of commonly observed significant biomarkers, based on 

statistical and ML questioning, were evaluated using four unique classes of ML classifiers. Each 

ML classifier was hyper-parameter-tuned, and after maximizing recall metrics through 

test/validation split, they were ensembled to accurately differentiate between patients and healthy 
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individuals. 

In this study, a newly developed approach was demonstrated to robustly unveil novel 

transcriptomic biomarkers that play important roles in the discovery of CVDs. Unbiased 

development of competing classifiers was conducted, and the highest accuracy and robustness 

were achieved. As a result, 18 transcriptomic biomarkers were uncovered that highly significantly 

distinguished the CVD population used in this study to predict disease with up to 96% accuracy. 

Further, the results were cross-validated using clinical records collected from patients of the same 

cohort. The clinically derived variables were generally highly significant in drawing important 

conclusions regarding disease prevalence. To summarize, 18 highly significant biomarkers, 

especially CAMK2N1, GPR137B, and MAP2K3, were uncovered and served as potential 

indicators for the early detection of CVDs. 

6.3. Neurodegenerative Disease Biomarkers 

With the continuous aging of the population, neurodegenerative diseases are becoming a major 

burden of society. With the progressive loss of neurons, neurodegenerative diseases typically 

manifest as cognitive disorder, movement disorder, both cognitive and movement disorder, 

dysphagia, or ataxia [21]. The most extensively studied neurodegenerative diseases are AD and 

PD. As the most common form of neurodegenerative dementia, AD accounts for about 60-80% of 

dementia cases in elders. AD is a progressive disease that starts long before the onset of 

symptoms. The clinical pre-stage presents mild cognitive impairment with subtle memory loss that 

may not interfere with daily living activities. Although it is hard to simulate daily life activities, 

blood biomarkers have gained more attention recently due to their convenience, less cost, and less 

risk sampling [22]. 

Blood plasma samples are easy to collect from patients. Candidate protein biomarkers are 

screened and quantified by an antibody array. Differentially expressed proteins are selected as 

input features of a multilabel classification model to distinguish the Alma subset of AD, MCI, 

normal controls, and discriminator samples. Cross-validation is applied to ensure the model fits 

the dataset well and test accuracy on unseen external testsets. To further investigate the relative 

stage in the disease when a sample is annotated as AD or MCI, the pseudo time series of the 

plasma samples is deduced and profiled based on well-fitted Langevin process. Neurodegenerative 

diseases manifest as a progressive loss of function or structure of neurons that results in 

dysfunction and death of neurons. The death of neurons in the nervous system is irreversible and 

ultimately leads to the functional loss of networks and organs, resulting in clinical symptoms. 

7. Ethical Considerations in Omics Research 

Omics research has become a prominent field of study in recent years, leading to the emergence of 

ethical considerations that were once rarely discussed. Ethical issues in omics must be viewed 

against the backdrop of established ethics in the life sciences, which progress from simple and 

straightforward to complex, obscure, and unstandardized [2]. The ethical issues in omics are 

similar because they affect the lives of many vulnerable individuals, which obliges researchers to 

move from the realm of facts to the realm of values. Omics research will lead to the addressing of 

a range of issues, creating societal moral concerns and specific ethical issues for each omic. In a 

wider approach, the general presumptions of modalities of disruption in society are necessary. 

Omics research will affect many lives, often in unforeseen ways. Omics research may lead to the 

unintended effect of disempowering many individuals, raising questions about how autonomy is 

situated in a societal paradigm of dissatisfaction. Omics for all will address issues of access, 

applicability, and ownership/responsibility. This will also lead to moral concerns about the fair 

distribution of omics benefits. Omics also carries risks of stigmatization, labelling, enhancement, 

and genetic surveillance, raising questions about its societal desirability. These normative 

questions about why, what, and how omnics should be pursued are necessary. 

The acquisition of new research methodologies requires a substantial adjustment period. A 
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transition from a heroic age of a new science to a normalized application of it is required. The 

academic rhetoric surrounding ground-breaking advances and the dwarfing of existing work is 

replaced by a slowly growing critical mass of literature. As the road forward is undertaken, voices 

of concern increasingly surface and principles for the responsible development of that research 

field are called for. In the past five years, the omics research space has matured considerably. In 

tandem with this growth, the literature on ethical, legal, and social issues has significantly 

expanded, indicating that omics research is now an established research field. Yet an unorganized 

patchwork of ethical considerations still persists. 

7.1. Patient Privacy and Data Security 

Integrating multi-omics big data and artificial intelligence (AI) technologies in biomarker 

discovery for healthcare has received great attention as it may facilitate early diagnosis and timely 

intervention of complex diseases. However, it also raises fresh challenges and concerns involving 

patient privacy and data security. The integration of these emerging technologies necessitates the 

collection, fusion, and analytics of massive data with high dimensionality, and the involvement of 

third parties, such as cloud computing service providers. This may cause data security/privacy 

problems, such as unauthorized parties accessing sensitive information in omics data and patient 

health records. Various approaches have been proposed to tackle those privacy concerns using 

privacy-preserving or secure data sharing or access mechanisms. For example, data anonymization 

is widely used in practice to protect individuals against reidentification attacks when sharing data 

containing individually reidentifiable information. Privacy-preserving mechanisms such as 

homomorphic encryption, secure multi-party computation, etc., can be adopted to enable AI-

driven big data analytics while protecting data without compromising privacy. Prior to 

deployment of these security-privacy-preserving technologies in practice, many strict, responsible, 

and ethical requirements shall be fulfilled, including (1) governing proper use of data with strict 

compliance of laws, regulations, and business practices, (2) transparently informing patients how 

their personal data may be used, (3) preventing biased treatments arising from skewed database 

and models, (4) being traceable and verifiable by an auditing entity during a service evaluation. 

All these mechanisms aim at ensuring patients‘ trust over the responsible use of their personal 

information/assets. 

One effective solution to provide patients with secure access to distributed medical data while 

preserving their augmented privacy is the Secure Patient-Side Privacy Architecture. It uses paged 

compression to minimize the patient information retrieved at the remote end and a ternary 

extended Key-Hash-Message Authentication Code to preserve privacy in the compressed access 

patterns. With the SPPA approach, the patient‘s right of transferring and managing his/her health 

secrets is embedded in the user end. Patients are able to ensure and manipulate the privacy of their 

health data in the remote data service without introducing any complexities to the data service 

providers. This will open up tremendous prospects of health analytics and ensure full patient 

privacy at the same time. A major obstacle for collaborative research projects analyzing large-

scale heterogeneous patient data from different clinics is that individual hospital information 

systems each contain patient derived confidential data. Here, a secure pseudonymisation system 

protecting access to personal healthcare data that allow for the discovery of patterns is presented. 

It permits the assembly of a range of patient data, from genomics, clinical records, and medical 

imaging, while respecting privacy and encouraging collaborations amongst hospitals and 

researchers. This allows for the subsequent matching of patient data with the available analysis 

tools utilising high performance computing resources to facilitate the discovery of insightful 

information. 

The project now assembles a range of patient-derived data, from genomics, via clinical records, to 

imaging, whilst respecting privacy and encouraging collaboration among hospitals and 

researchers. For a better understanding of this assembled data, the secure access system has to be 

interfaced with the data analysis workflows used for clinical decision support. [23][24][25] 
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7.2. Informed Consent in Research 

Ubiquitous health data—resulting from habitual monitoring through personal devices, new 

collection technologies and partly because of regulatory investments—are predicted to be widely 

mined using Artificial Intelligence (AI) algorithms. By discovering population-wide health risks, 

urgent and relevant public health measures are envisioned. Such predictions can motivate health-

promoting behavior in individuals and clinical diagnosis. Nevertheless, essential ethical questions 

arise. Using a European citizen panel approach, this paper reports on citizens‘ attitudes towards 

research based on mining ubiquitous health data. The citizen panel (N = 27), convened for an 

iterative series of informed discussions and deliberations, first highlighted ethically important 

issues. Its subsequent qualitative analysis provides insights into three focal considerations with a 

strong influence on a variety of views: (i) sharing ubiquitous health data for research purposes is 

almost acceptable as long as trust is established, (ii) actors ought to be trustworthy, ideally 

reflecting the public good, and (iii) citizens regard a clear elaboration of terms like ‗data mining‘ 

and ‗individually impossible disclosure‘ as necessary precursors for donation decisions [26]. 

8. Future Directions in Multi-Omics and AI 

Biomarkers play a critical role in the early diagnosis of complex diseases. However, their 

discovery is often hindered by biological complexity and sample limitations for validating results. 

Integrative multi-omics approaches provide a viable solution, but the potential to remedy the 

overwhelming data scenario is hampered by the need for suitable AI models. AIMD aims to tackle 

this challenging scenario by developing an integrative AI framework, covering all steps from data 

processing to predictive biomarker discovery and validation for large-scale cancer multi-omics 

studies. AIMD has been successfully applied for breast cancer subtype identification and gene 

signatures (feature) detection across multiple platforms. The new article aims to boost future 

research in the area with deep details on multi-omics data acquisition, AI models for integrative 

learning, and computational tools for future applications. New parameter tuning and model 

development will be added to enhance model efficiency and robustness in future works. It can 

create a new bioinformatics platform through collaborations for intuitive and automatic model 

design and hyper-parameter tuning. Integrative studies aided by multi-omics analysis, 

mathematical modeling, and deep learning-AI-based strategies will lead to the development of a 

more comprehensive understanding of cancer metastasis. Multi-omics data is multi-dimensional in 

nature and ―big‖ in size. The data need to be stored anonymously maintaining quality. The use of 

omics data is mostly limited to transcriptomics, copy number variations, and DNA methylations 

because of their abundance in different data portals. Repositories like store and share different 

types of transcriptomics and genomics data. The Clinical Proteomic Tumor Analysis Consortium 

provides proteomics data corresponding to TCGA cohorts. The precision medicine initiative, 

launched in 2015 in United States, aims to shift from ―one-size-fits-all‖ treatment to tailored 

treatment for cancer patients. Precision medicine uses a more individualized molecular approach 

and enriches pharmacogenomics. This individualized approach requires the assembly and analysis 

of the individual‘s molecular signatures, which could be manifested in the form of multiple types 

of omics data representing the status of various biomolecules for this individual. AI and other deep 

learning tools and techniques can be utilized to optimize the utilization of patients‘ derived multi-

omics data to extract target bio-entities and fit the targets with drug–target interaction data to 

extract relevant drugs and doses in the omics data landscape. Technologies like nanotechnology 

are boosting the attempt to targeted drug delivery. This well-defined approach is beneficial for 

discovering ―new‖ drug candidates for targeted therapy of ribonucleotide reductase inhibitors (and 

other enzymes that catalyze nucleotide triphosphates dephosphorylation to protect cells from 

hyperphosphorylated RNA species) in viral and other diseases (). [27][28] 

8.1. Emerging Technologies 

Over the past several years, the rapid development of novel sequencing technologies broadened 

the range of biological layers accessible for high-throughput measurements and consequently 
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increased the amount and complexity of primary biological data. In principle, relevant biological 

information can be obtained from genome-wide measurements of nucleic acids, RNAs, proteins, 

and metabolites thanks to rapid advancements in appropriate biosensors based on sequencing, 

chromatography, nuclear magnetic resonance, and mass spectrometry. Owing to possible omics 

layers being numerous and data complexity being daunting, integrative data-driven analysis of 

multi omics matrices has become a prominent and ambitious field of study. ―Multi-Omics‖ 

denotes sets of data matrices preprocessed from different modalities that profiled sample-to-

sample variations of abundances of different molecular entities. A typical Multi-Omics application 

applies an analytical pipeline to preprocessed data matrices for questions of scientific interest and 

biological relevance. Since both omics datasets of any types are in matrices of samples × features 

(entities), they can be analyzed in a pairwise manner by relying on data integration or distilling 

approaches that produce sample-proxy matrices. The newly produced sample-proxy matrix from 

two entities are then brought into consideration of data-driven exploratory tasks such as clustering 

and discriminative analysis. 

Software tools and servers aim at effectively applying multi omics approaches on systems biology 

questions or medicine problems. Data merging tools accompany a server and a standalone 

software for merging, integration, and network analysis of paired omics data. A comprehensive 

data mining and visualization server for an arbitrary number of individual omics datasets is 

available. Knowledge-based approaches implement pathway enrichment analysis for gene 

networks, textual databases, miRNA-gene interaction databases, or drug-target databases, and so 

on. There are also some general Multi-Omics tools that focus on machine-learning-based 

approaches and can be integrated pipelines. Multi-Omics analysis extends biological insights to 

more explanatory interpretation models, yet inevitably introduces a leak of reproducibility. 

Existence and co-development of public Multi-Omics data with thorough omics profiling of the 

same sample across diverse modern cloud-out infrastructure and analysis strategies facilitate 

transparent description of every specific data-driven analysis. Recently, a comprehensive 

implement tool has been made available to automate the adaptive generation of the corresponding 

reproducible analysis protocol based on scripts for every general application with multi omics 

data. [29][30][31] 

8.2. Integration with Clinical Practice 

Precision medicine aims to empower clinicians to predict the most appropriate course of action for 

patients with complex diseases like cancer, diabetes, cardiomyopathy, and COVID-19 [32]. Multi-

Omics, Clinical, and Biological Analytics can provide insight into the underlying biology of 

diseases beyond the single-dimension evaluation of clinical or omics data. Understanding the 

patient's metabolomics and genetic make-up in conjunction with clinical data will significantly 

lead to determining predisposition, diagnostic, prognostic, and predictive biomarkers ultimately 

providing optimal and personalized care for diverse diseases. In clinical settings, a multi-omics 

profile can be provided for patients with a complex disease, thereby determining coordinated 

clinico-multi-omics analytics power for a timely model of clinical and multi-omics data to find 

statistical patterns to identify underlying biologic pathways, modifiable risk factors, and 

actionable information that support the early detection and prevention of complex disorders, and 

the development of new therapies for better patient care. It could tap into the colorful spectrum of 

biological, clinical, lifestyle, and environmental information prior to long and costly adverse 

outcomes to finely segment at-risk populations through tailored, coordinated monitoring and 

logistical and behavioral intervention for wellness and the attenuation of cardiometabolic risk 

factors long before the onset of disease; the outcome of using a multi-omics-integrative platform 

could ultimately revolutionize medicine, re-positioning it from a symptom-driven ―reactive‖ 

approach, to a predictive ―proactive‖ one to identify modifiable risk factors and enable earlier 

interventions. 

Finding less invasive methods to improve diagnosis and prediction of diseases are an important 

goal of biomarker identification. Translating these research insights into clinical practice has the 
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potential to improve health care [33]. However, every study conducted has its own set of 

requirements and constraints. Gathering all requirements and engineering a generic solution that 

fits all requirements seems infeasible. Furthermore, analysts and physicians emphasized the 

importance of solutions that fit into their individual workflows and facilitate interdisciplinary 

communication and analysis. This seems especially crucial since without tools that are tailored to 

their individual workflows, analysts and physicians could have a hard time utilizing research 

insights. 

9. Conclusion 

Bioinformatics-assisted approaches are sought for data collection, curation, storage, and analysis 

to discover reliable molecular signatures or biomarkers of complex diseases like cancer at an early 

stage. Especially proteomics, metabolomics, and transcriptomics have been claimed reliable to 

conduct screening trials for MS. As multi-omics data continue to grow exponentially in size due to 

increasing availability of high-throughput molecular tools from both academia and industry, 

advanced AI/ML-driven data integration and machine knowledge extraction approaches enable 

more reliable biomarker discovery for improved understanding of a disease. Application of 

advanced AI-driven data analytics in MS biomarker discovery is still in its infancy. Potentials are 

enormous to transform the current data-poor knowledge environment into knowledge-rich bio-

complexity understanding and patient benefit. 

The AI-driven data analytics and ML-driven knowledge discovery approaches presented here are 

expected to significantly improve the current data-to-knowledge translation system by using 

emerging joint data integration, analytics, and knowledge extraction techniques. The success of 

integrative analysis and multi-omics discovery of complex biomarkers strictly relies on machine 

readiness, completeness, and compatibility of the biomedical big data; appropriate integration, 

analytics, and knowledge extraction approaches; deep learning of appropriate thresholded data; 

scalable hard and soft realization of the selected candidate biomarker sets and their hard 

establishment in the in-house screening platforms; and QMS-compliant validation and 

commercialization of the discovered biomarker sets. AI-ML-based tasks that require human 

expertise and priori knowledge are highlighted. 

AI/ML approaches could be fundamental to serve as supporting pieces or solution paths for more 

traditional methods or heuristics within a hybrid biodesign framework to maximize the 

compromise between interpretability, efficiency, and effectiveness of the multi-omics discovery 

methodologies proposed above including flexible architecture configurations, canvasses, and task 

instances. IMOMs would also be applied to integration and analysis of novel cancer multi-omics 

data types since, unlike transcriptomes, glycomics, and lipidomic data, methylomes, and 

metabolomes have not been yet studied deeply in multi-omics data integration and knowledge 

discovery. On the other hand, co-integration and co-analysis approaches for joint input and hidden 

multi-task models and multi-view models would be critically explored to use existing integration 

of data for preknowledge acquisition or knowledge refinement. 
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