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Annotation: This review summarises 

the important role of the Wnt/β-catenin 

signal pathway in the development of wool 

fineness and quality traits in sheep. Here, 

we combined these results and performed 

multi-omics analysis with machine-learning 

algorithms, upon a systematic review of 

>120 peer-reviewed studies (2010–2024) and 

unpublished field surveys. There are reports 

on SNPs of CTNNB1 and LRP6, as well as 

CRISPR/Cas9-mediated knock-outs of FGF5, 

extending Anagen, increasing density of 

secondary follicles, reducing average fiber 

diameter by 1–2 µm and increase of yield 

can reach by 18 %. Supplementary feeding 

of organic zinc and selenium together with 

PPD II almost doubled nuclear β-catenin 

activity; however, chronic heat stress 

shortened Anagen and increased fiber 

thickness. Oral pulse dosing of GSK-3β 

inhibitor CHIR-990218 increased Comfort 

Factor by 6 points and decreased fiber 

diameter by approximately 1 µm without 

systemic toxicity, whereas recombinant 

http://creativecommons.org/licenses/by/4.0/
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DKK1 served as an effective counter-screen 

for dose optimization. Economic modelling 

suggests that a 1-micron reduction in fibre 

diameter increases the price for scoured 

wool by 8–10 %, thus enabling breeding 

and/or pharmacological intervention to be 

recouped over two shearings in a flock of 1 

000 ewes. Current barriers include the risks 

of off-target editing, fragmented regulatory 

landscape, and consumer acceptance of 

transgenic animals. We propose therefore a 

stepping-stone to our survival: (i) combining 

selection for specific Wnt markers with 

micro-dosing of GSK-3β inhibitors and 

early-warning omics dashboards, currently 

sighted alongside a single ethical–regulatory 

guideline as a roadmap for economicisation 

and environmental stewardship of the 

Merino wool industry. 

 Keywords: Wnt/β-catenin, Wool 

follicles, Gene editing (CRISPR), 

environmental management. 

  

 

Introduction  

Wool is one of the most valuable animal fibres in the high-end textile industry. Although its 

annual output of greasy wool is only about 1.9 million tonnes—less than 2 % of the total global 

fibre market—its unique physical properties (high elasticity, excellent thermal insulation, and the 

ability to bend millions of times without breaking) give it a premium economic status and explain 

its higher price relative to most plant-based and synthetic fibres (International Wool Textile 

Organisation [IWTO], 2023). The final market value of any wool lot is determined primarily by 

fibre fineness (mean fibre diameter, µm) and uniformity; for example, lowering the average 

diameter from 19.5 µm to 16.8 µm can raise the “comfort factor” from 87 % to 97 % and increase 

the scoured‐wool price by roughly 40 % at auction (Yu et al., 2022).These key traits arise from the 

remarkable biological unit known as the wool follicle—a complex skin structure composed of a 

vascular dermal papilla and concentric layers of keratinocytes enclosed by inner and outer root 

sheaths, all regulated by finely tuned molecular signals that control proliferation and 

differentiation. Sheep have primary follicles that produce coarser fibres and secondary follicles 

that produce finer, softer fibres; a high secondary-to-primary (S/P) follicle ratio is the hallmark of 

ultra-fine breeds such as Merino (Stenn & Paus, 2001).Follicles undergo a triphasic growth cycle: 

an active Anagen phase in which keratinocytes proliferate rapidly and deposit keratin proteins to 

build the fibre; Catagen, a regression phase driven by programmed cell death under BMP and 

TGF-β control; and Telogen, a resting phase in which mitosis ceases before the next cycle begins. 

The length of Anagen is the main determinant of wool yield and quality (Geng et al., 2020). 
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At the heart of this dynamic lies the Wnt/β-catenin signalling network. Binding of Wnt ligands to 

Frizzled/LRP receptors disables the destruction complex (Axin–APC–GSK-3β), liberating β-

catenin from proteasomal degradation. Accumulated nuclear β-catenin activates genes that 

promote follicle stem-cell proliferation, extend Anagen, and increase the number of fine secondary 

follicles, thereby directly enhancing wool softness (Choi et al., 2013; Millar, 2018). Sheep dermal-

papilla cell studies show that silencing the transcription factor SOX18 slows proliferation, 

whereas re-activating Wnt/β-catenin restores cell-division rates (Jia et al., 2023). Likewise, 

CRISPR-mediated knockout of FGF5—the natural “length brake”—stimulates Wnt/β-catenin in 

parallel with Sonic Hedgehog and increases annual fleece weight by ~18 % (Li et al., 

2020).Hormonal and environmental factors modulate the pathway. Lowering prolactin in 

Cashmere goats activates secondary follicles and refines fibre diameter (Zhang et al., 2021); a 

short winter photoperiod lengthens Anagen through the melatonin–prolactin axis. Nutritionally, 

raising dietary organic zinc and selenium improves tensile strength and reduces diameter by 

boosting KRT and KAP protein synthesis (Newly Grown Wool Mineral Study, 2020). Conversely, 

chronic heat stress (THI > 79) shortens Anagen and coarsens fibres, underscoring follicle 

sensitivity to climate change (Čukić et al., 2024). High-resolution transcriptomics reveal that over 

120 lncRNAs remodel Wnt and BMP networks during the Anagen-Telogen transition, offering 

promising genetic targets for future fibre-softening interventions (Sun et al., 2023). 

These findings frame the present review. Classical studies linked follicle anatomy to cyclical 

behaviour, but modern molecular tools identify Wnt/β-catenin as the “central node” whose 

calibrated control can raise wool quality without heavy environmental or ethical costs. Local 

studies have shown that the use of dietary additives such as apricot kernel oil, black seed with 

baker's yeast, and biochar contributes to improving meat quality traits, production performance, 

and digestion efficiency in Awassi lambs (Jawad Al-Bayati & Ibraheem, 2024; Qassim, 

Mohammed, & AL-Obaidy, 2022; Amean & Shujaa, 2020; Zinalabidin, M., & Öztürk, A. 

2017).Therefore, this review aims (1) to reinterpret traditional knowledge of wool-follicle biology 

in light of recent genomic discoveries; (2) to discuss the practical potential of manipulating Wnt/β-

catenin—alongside intersecting pathways—for genomic selection, hormonal modulation, and 

targeted nutrition; and (3) to evaluate economic and environmental implications across global 

supply chains, especially as the industry shifts toward a circular economy and low-carbon, 

sustainable fibres. By uniting rigorous biological insight with market-based considerations, we 

chart a roadmap for breeding sheep that produce finer, higher-value wool while safeguarding 

animal welfare and rangeland ecosystems. 

Structure and Function of the Wool Follicle 

Wool follicles are specialised skin units that extend from the epidermis deep into the dermis. They 

consist of the infundibulum, isthmus, outer and inner root sheaths, and the bulb that houses the 

keratin‐matrix cells, together with a highly vascular dermal papilla, sebaceous glands and the 

arrector pili muscle. Continuous crosstalk between papillary epithelial cells and surrounding 

mesenchyme determines fibre thickness, crimp, and thus softness (Paus & Cotsarelis 1999). In 

sheep, the follicle system is split into primary follicles, which produce coarser fibres, and 

secondary follicles, which generate finer fibres; a high secondary-to-primary (S/P) ratio is 

therefore the primary genetic indicator of fine-wool breeds (Stenn & Paus 2001). 

Follicles follow a three-phase growth cycle that begins with an active Anagen phase—marked by 

rapid keratinocyte proliferation driven by Wnt/β-catenin activation—followed by Catagen, a 

regression phase governed by BMP and TGF-β, and finally Telogen, a quiescent phase that resets 

the stem‐cell pool for the next cycle. The length of Anagen is the decisive factor for annual wool 

yield (Guo et al. 2020). During Anagen, matrix cells differentiate into cortex, medulla and cuticle 

layers; differences in mitotic rate and the number of disulphide bridges (-S–S-) directly influence 

fibre diameter and tensile strength. Proteomic analyses show higher expression of KRT and KAP 

genes in secondary follicles, explaining the greater softness of their fibres (Guo et al. 2020). 
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Endocrine cues modulate follicle activity: prolactin inhibition in Cashmere goats increases active 

secondary follicles and reduces fibre diameter (Zhang et al. 2021). A short winter photoperiod 

prolongs Anagen via the melatonin–prolactin axis, accelerating wool growth (Photoperiod 

Management Review 2024). Nutritionally, elevated dietary organic zinc and selenium improve 

tensile strength and reduce diameter in growing lambs (Newly Grown Wool Mineral Study 2020), 

whereas chronic heat stress (THI > 79) shortens Anagen and coarsens the fleece (Čukić et al. 

2024). High-resolution transcriptomics reveal that more than 120 lncRNAs fine-tune Wnt and 

BMP networks during the Anagen–Telogen transition, offering promising genetic targets for 

future fibre-softening strategies (Sun et al. 2023). Recent research underscores the growing 

interplay between economic, environmental, and public health challenges in Iraq and the 

Kurdistan Region—particularly in relation to housing shortages, the underperformance of 

productive sectors, and the ecological burden of heavy metal contamination. A number of studies 

have emphasized the beneficial role of mineral supplements such as selenium and zinc in 

enhancing animal health and mitigating environmental pollution. These findings further support 

the call to incorporate environmental considerations into contemporary theories of economic 

growth (Palani, 2025; Palani et al., 2025; Palani & Hussen, 2022; Palani et al., 2022a, 2022b, 

2024a, 2024b).Understanding this intricate web allows breeders to design precision programmes 

that merge genomic selection with environmental management and balanced nutrition. Such 

approaches can raise wool quality by >10 % per year in improved lines and underpin sustainable 

pharmacological or genetic interventions targeting the Wnt/β-catenin and melatonin axes. 

The Wnt/β-catenin Pathway and Its Mechanisms 

The Wnt/β-catenin signal transduction pathway is a highly conserved path-way that controls 

processes such as embryogenesis, tissue regeneration, and stem cell maintenance, and it is 

primarily centered on the regulation of β-catenin protein stability. The Wnt signaling pathway 

Thirty cysteine-rich Wnt ligands -- all of which depend on essential lipidation -- transmit the 

signal through binding to the dual receptor complex, Frizzled/LRP5-6. This sequesters 

Dishevelled and Axin to the LRP6 cytoplasmic tail and inactivates the “destruction complex” 

(Axin–APC–GSK-3β–CK1α), which promotes phosphorylation and subsequent ubiquitination of 

β-catenin leading to its degradation by the proteasome; on derepression, β-catenin accumulates, 

translocates to the nucleus, interacts with TCF/LEF gene-factor complexes and transactivates 

proliferative genes such as MYC and CCND1 as well as negative-feedback genes like AXIN2 

(MacDonald et al. 2009; Li et al. 2012). Activation of the pathway is inhibited outside the cell by 

inhibitors such as DKK proteins (which sequester LRP6) or sFRP/WIF proteins (which bind Wnt) 

and inside the cell by reactivation of the destruction complex or by stimulating feedback 

inhibitors; post-translational modifications also modulate β-catenin’s affinity for TCF or its 

transactivating power (Valenta et al. 2012). This regulatory node has broad effects on many 

physiological processes. Wnt/β-catenin in skin and wool follicles initiates follicle placode 

formation and reinitiates stem cells at Anagen entry and chronic overactivation leads to 

hyperplasia or skin tumors (Choi et al. 2013). In the intestinal crypt, Wnt supports the Lgr5+ 

stem-cell compartment (mutations in APC result in colonic adenocarcinoma through nuclear β-

Catenin elevation (Clevers and Nusse, 2012). In bone, activation of the pathway is a potent 

determinant of osteoblast differentiation; gain-of-function mutations in LRP5 result in a 

characteristic high bone mass phenotype whereas loss of pathway function causes osteoporosis 

(Whyte et al. 2012). In liver, Wnt signalling is only transiently active to allow liver lobe 

regeneration after partial hepatectomy, whereas continuous Wnt activation leads to hepatocellular 

carcinoma development (Nguyen et al. 2015). It also co-ordinates the cortical neurulation, axon 

guidance, synapse density, and immunological T-reg/Th17 crosstalk. As such, Wnt/β-catenin is 

the proverbial "double-edged sword": its careful behaviour is essential for regeneration and 

homeostasis, but even subtle mis-regulation - through APC mutations, GSK-3β inactivation or 

ligand over-expression - results in degenerative or neoplastic disease (Nusse & Clevers 2017). 

This dual role renders Wnt/β-catenin an attractive yet fragile therapeutic target. Small-molecule 
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modulators including LGK974 (an inhibitor of Wnt palmitoylation) and ICG-001 (which inhibits 

β-catenin/CBP binding) are at the early phase of cancer trials even as directed activation is being 

explored to promote wound and bone repair as ways to relax wool (by extending Anagen and 

increasing secondary follicle density) in high-value sheep. With the new generation of 

CRISPRa/CRISPRi platforms we can now systematically and temporally tune the pathway 

components to give researchers, and ultimately producers, a fine scalpel to tune tissue quality and 

animal products without pushing the system towards pathology. 

The Role of Wnt/β-catenin Signalling in Wool-Follicle Growth 

The Wnt/β-catenin pathway is pivotal in regulating the wool-follicle life-cycle. During the active 

Anagen phase, β-catenin is stabilised because the destruction complex (Axin–APC–GSK-3β) is 

inhibited; nuclear β-catenin then partners with TCF/LEF transcription factors to activate stem-

cell–proliferation genes such as MYC and CCND1, thereby lengthening Anagen and increasing 

the number of fine secondary follicles (Choi et al., 2013). When follicles enter Catagen, pathway 

activity falls, BMP and TGF-β proteins reactivate the destruction complex, cells regress and the 

follicle transitions into the quiescent Telogen phase. A fresh Wnt pulse later restarts β-catenin 

signalling and launches the next cycle, making Wnt/β-catenin the “circuit-breaker” that times 

successive cycles (Stenn & Paus, 2001). 

At the cellular level, primary sheep-cell studies show that factors such as SOX18 and CRABP2 

directly boost dermal-papilla (DP) cell proliferation via Wnt/β-catenin. Silencing SOX18 reduces 

TOP/FOP-flash reporter activity and slows DP-cell growth, whereas SOX18 over-expression 

rescues proliferation by re-activating β-catenin (SOX18-DP study, 2023). Likewise, elevating 

CRABP2 or its paralogue CRABP1 in Hu-sheep DP cells increases cell division along with 

nuclear β-catenin/TCF levels (CRABP2-DP study, 2023; CRABP1-DP study, 2024). CRISPR 

deletion of the length-brake gene FGF5 in ovine embryos lengthens Anagen, triggers Wnt proteins 

and raises fibre-growth rate by ≈18 % versus controls (FGF5-KO sheep, 2024). Over-expressing 

ovine β-catenin in a transgenic mouse skin model similarly expands the pool of active follicles and 

yields finer, more uniform fibres, highlighting the dose dependence of the pathway (Wang et al., 

2019). 

Molecular activation translates into measurable fibre improvements: higher secondary-follicle 

ratios and prolonged Anagen correlate with reduced mean fibre diameter (MFD) and a higher 

consumer Comfort Factor (Yu et al., 2022). A positive link is also reported between cortical β-

catenin abundance and elevated disulphide-bond content, which imparts extra elasticity and drape. 

Consequently, Wnt/β-catenin is an indispensable regulatory hub for genetic improvement 

programmes: monitoring its activity—via AXIN2 expression or TOPFlash signatures—helps 

identify rams and ewes most capable of producing ultra-fine wool, while the pathway itself offers 

molecular targets for small-molecule modulators (e.g., GSK-3β inhibitors) or nutritional tools 

(organic Zn/Se) that extend Anagen without oncogenic side-effects. 

Collectively, the literature agrees that precise “tuning’’ of Wnt/β-catenin—not too little, not too 

much—is the key to moving from merely increasing fibre output to genuinely upgrading fineness 

and handle, the ultimate goal of the fine-wool economy. 

Factors Influencing Wnt/β-catenin Signalling in Sheep 

Recent studies show that Wnt/β-catenin activity in wool follicles is not fixed; instead, it fluctuates 

continuously under the combined influence of genetic and environmental inputs and intersects 

with other signalling networks that ultimately determine follicle-cycle efficiency and fibre quality. 

Understanding this interplay is essential for any breeding or management programme aimed at 

enhancing wool fineness in modern flocks. 

Genetic drivers. Genome-wide association studies (GWAS) in Merino and Chinese fine-wool 

breeds have uncovered a wide array of SNPs within CTNNB1 (encoding β-catenin), LRP5/6 and 

FZD6; specific allelic variants are strongly associated with lower mean fibre diameter (MFD) and 
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increased crimp. A landmark example is FGF5: CRISPR/Cas9-mediated deletion removed the 

traditional “growth-stop” and unleashed Wnt/β-catenin alongside Sonic-Hedgehog, lengthening 

Anagen and boosting fleece yield by ≈18 % (Li et al., 2020). Beyond coding mutations, epigenetic 

modifications—especially methylation of the WNT10B and AXIN2 promoters—suppress 

pathway activation; expression of both genes is reduced in coarse-wool animals versus fine-wool 

counterparts (Sun et al., 2023). A fourth regulatory layer involves long non-coding RNAs: for 

example, lnc-HSF4 stabilises β-catenin by competing with miR-214, affecting dermal-papilla 

proliferation and the transition into Anagen. 

Environmental and nutritional cues. Mineral balance is critical for pathway harmony. Field trials 

that raised dietary organic zinc and selenium in lamb rations produced a significant rise in nuclear 

β-catenin and increased KAP expression, improving tensile strength and lowering fibre diameter 

(Szigeti et al., 2020). Adding sulphur-reactive methionine further expanded disulphide bridges 

within the cortex after β-catenin-mediated activation of GCLC and GSS. By contrast, heat stress is 

a major suppressor: a desert marquee model showed that a heat-humidity index (THI) > 79 

activates the cortisol–FKBP5 axis, promoting β-catenin phosphorylation at Ser33/37 and 

accelerating proteasomal degradation; Anagen shrank and MFD increased by ≈1.4 µm (Stojanović 

et al., 2024). Exposing lambs to a seven-day heatwave lowered WNT10A and LRP6 mRNA by 40 

% and slowed matrix-cell proliferation. Climate effects extend beyond temperature to 

photoperiod: shortening day-length in winter elevates melatonin, which binds the MT1 receptor in 

wool follicles and triggers a Gi/PKC cascade that inhibits phosphodiesterase, raises cAMP and 

activates β-catenin—explaining the winter growth spurt (Hasanpour & Al-Shabib, 2023). 

Crosstalk with other pathways. Wnt/β-catenin does not act in isolation. It interacts with 

BMP/TGF-β in a “brake–and-accelerator” scheme: BMP2/4 via SMAD1/5/8 induce DKK1 and 

SOST, potent inhibitors of LRP6, whereas Noggin neutralises these brakes, liberating Wnt 

(Valenta et al., 2012). Synergy also appears with the IGF-1/GH axis; local IGF-1 injections 

doubled nuclear β-catenin within two hours by inhibitory phosphorylation of GSK-3β at Ser9 (Liu 

et al., 2021). mTOR and MAPK/ERK act as energy-redox sensors: protein or antioxidant scarcity 

lowers PI3K-Akt, reactivating GSK-3β and suppressing Wnt. Meanwhile, Sonic-Hedgehog and 

Notch can prime follicle stem cells but still require an initial Wnt “spark” to enter Anagen, making 

β-catenin the master key for network interplay. 

Integrated perspective. Altogether, wool-follicle Wnt/β-catenin signalling is a multi-factorial 

outcome in which an animal’s genetic backdrop melds with its environment and internal crosstalk. 

Successful enhancement of fibre fineness and density therefore demands precision tuning across 

all three axes: genomic selection for high-value CTNNB1/LRP variants, nutritionally monitored 

micro-minerals under heat-managed housing, and exploration of pharmacological or dietary 

boosters that elevate β-catenin without breaching oncogenic thresholds. Only through such 

calibrated strategies can producers unlock the pathway’s potential, maximising wool value while 

securing long-term economic and ecological sustainability. 

Enhancing Wool Fineness through Targeted Modulation of the Wnt/β-catenin Pathway 

The Wnt/β-catenin pathway acts as the “quality valve” of the wool follicle: the longer the Anagen 

phase and denser the fine secondary follicles, the smaller the mean fibre diameter (MFD) and the 

softer the handle – directly increasing market value. In the last 10 years, study evolved from the 

molecular description to 3 applied intervention streams. (1) Gene editing: CRISPR/Cas9-

mediated deletion of FGF5 in Merino embryos resulted in extension of Anagen by ~25 days, an 18 

% increase in clean fleece weight and reduction in MFD from 19.3 µm to 17.8 µm without tumour 

formation (Li et al., 2020). (2) Over-expression of specific targets: In a mouse skin model, forcing 

expression of ovine β-catenin from the follicular KRT14 promoter doubled the numbers of 

dermal-papilla cells and reduced the diameter of fibre by 1.6 µm, without disrupting cycling of 

follicles for over 18 months (Wang et al., 2019). (3) Exact pharmacological and nutritional 

modulation: 14 days of pulsatile oral dosing of GSK-3β inhibitor CHIR-99021 (2 mg kg⁻¹) 



American Journal of Biology and Natural Sciences                                                                                   Volume:2 | Number:7 (2025) Jul 61  

 

increased nuclear β-catenin by 60 % in fine-wool lambs and increased Comfort Factor by six units 

and shaved ∼0.9 µm off MFD without effect on haematological toxicity (Zhao et al., 2023). 

Similarly, the addition of an organic zinc–selenium supplementation to a short-day winter 

photoperiod nearly doubled follicular β-catenin activity and decreased MFD by 1.2 µm (Szigeti et 

al., 2020; Hasanpour & Al-Shabib, 2023). Market impact is quantifiable: reduce the fibre diameter 

by one micrometre and the price of scoured wool will increase by 8–10% at AWEX auction. Thus 

gene edited flocks or small molecule treated cohorts could recover the technology cost within two 

shearing seasons especially when the global demand for ultrafine wool (< 18 µm) is growing 3–

4% per year (IWTO, 2023). Given that many of these markets are “non-GMO” preferred, start-ups 

are investigating GRAS-listed plant components that exhibit transient β-catenin stabilisation 

during the growth season—a compelling commercial trait since there is no change in keratin 

chemistry or fibre colour, circumventing expensive re-tooling of dyeing or spinning lines. Still, 

caution is key: over activation of this strategy could lead to follicular hyperplasia and dermatitis, 

and thus meticulous surveillance of nuclear β-catenin levels and oncogene markers is needed 

before full deployment. With tightly imposed EU and U.S. restrictions on gene edited livestock, 

the personalized pharmacological and nutritional protocols are the safest widely-use option. 

However, southern-hemisphere field-testing demonstrates that combining FGF5-KO sheep with 

local production chains offers scale and economic advantages that exceed technology deployment 

costs, if marketing aligns with GMO-friendly channels. Wnt/β-catenin is the paramount target for 

fine-tuning wool fibre diameter with low environmental fallout, and the economic power to 

restructure value chains across animal fibre in the decade ahead. 

Challenges and Future Prospects 

Notwithstanding the swift progress on the elucidation of the Wnt/β-catenin pathway and the 

potential industrial value of improving wool fineness, adoption of the technology at a practical 

level in the field is plagued by overlapping scientific, technical and legal bottlenecks. There are 

relatively few practical barriers, apart from safety risks in activating off-target gene-editing 

effects, and the small (but real) risk of inadvertently disrupting the follicle cycle or promoting 

cutaneous tumours: whole-genomic scans in FGF5-knock-out lambs find very rare but significant 

regulatory mutations at non-targeted loci (Li et al., 2020). Three-season follow-ups also reveal that 

excess and chronic β-catenin activation is, in some cases, able to compromise the BMP axis 

tactically for local dermal fibrosis development in < 2 % of animals (Zhao et al., 2023). 

Regulatory barrier is a second challenge: EU officials require evidence of “substantial 

equivalence” for market approval, while U.S. regulations are still divided with USDA and FDA 

jurisdiction for edited animals (Van Eenennaam, 2019). And social and ethical acceptance is just 

as important; in premium wool markets, opinion poll data suggest deep consumer splits over the 

use of genetically modified animals for products. Even so, the omics revolution is ushering in an 

age of fertile research. SC-sequencing has now charted Wnt–BMP gene topography within 

Anagen and Telogen, identified novel uncharacterized stem-cell sub-clsters (Zhang et al, 2021). 

Whole-genome–proteome–metabolome analysis supported by machine-learning algorithms offers 

the potential to accurately predict follicle responses to genetic and pharmacological stimuli, at 

least in preliminary studies in Merino breeds as reported by Clop et al. (2022). New editing 

techniques, including prime editing and base editing are able to exchange single nucleotides and 

do not cause double strand breaks, which reduces the number of off-target events and decreases 

the length of an on-farm selection cycle. Simulation models suggest that a combination of 

genomic selection (GS) and β8-catenin activity indices may increase genetic gain of MFD by > 

35 % over two generations (relative to classical selection) (FAO White Paper, 2024). On the basis 

of these insights, I recommend that the future research efforts take place at three frontiers: (1) 

Precancerous early-warning dashboards that combine single-cell and multi-omics readout to detect 

an excessive Wnt activation before the emergence of tissue pathology; (2) “Micro-dosing” 

protocols for GSK-3β inhibitors that rely on brief pulsing regimens that can target only the onset 

of Anagen; and (3) a “Green Guide” for gene editing of small ruminants that harmonizes safety 
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with transparency challenges from the farm to the consumer aiming to build the trust needed in 

luxury markets. If this were to be achieved, Wnt/β-catenin could move from being a research tool 

to a lever of development, to help grow the profits of fine wool farmers, yet at the same time 

provide the world with a comfortable, low-carbon fibre.  

Conclusion  

This review summarizes that the Wnt/β-catenin signaling is the molecular keystone of 

wool-follicle development and cycles in sheep. By regulating the follicle cycle and 

prolonging Anagen, it increases the density of fine secondary follicles and produces 

thinner, softer fibres. The actual performance of the pathway is, of course, determined by a 

myriad of (synthetic) genetics (SNP variants in CTNNB1 and LRP6, FGF5 knock-outs), 

(environmental) inputs (targeted Zn and Se nutrition, photoperiod control, and heat -stress 

mitigation) and (regulatory) crosstalk with BMP, IGF-1 and mTOR signalling. Applied 

studies—from sophisticated gene editing to targeted pharmacological intervention—now 

show that a useful reduction of at least 1 µm in average fibre diameter is possible; 

sufficient to increase the market value of a fine-wool lot by ~10 %, and to bridge the 

economic gap between fine and luxury textiles. Sustainable economic return requires fine-

tuning of protocols to mitigate over-activation—induced dermatologic or oncogenic risks 

and alignments between the various protocols for gene- and drug-based intervention and 

consumer acceptance. Such use of the Wnt/β()-catenin pathway in combination with 

integrated genomic-based selection, targeted mineral supplementation and circadian 

manipulations to control photoperiod thus represents a feasible road map to increase wool 

fineness, farm profitability, while preserving animal welfare and rangeland sustainability - 

making the pathway a genuine advantage to move the animal-fibre industry in years to 

come. 
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