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Annotation: Adenovirus infections 

pose a significant risk to 

immunocompromised individuals and 

challenge the efficacy of viral vector-based 

gene therapies due to strong immune 

responses. While the involvement of 

cytotoxic T lymphocytes (CTLs) in 

adenoviral immunity is recognized, detailed 

understanding of epitope-specific CD8⁺ T 

cell dynamics and their persistence remains 

limited. This study utilized BALB/c and 

C57BL/6 mouse models to identify 

immunodominant CD8⁺ T cell epitopes 

using ELISPOT assays targeting hexon and 

DNA-binding proteins of adenovirus 

serotype 5. The findings reveal that T cell 

responses peak early and remain detectable 

for several weeks post-vaccination, with 

similar responses observed between wild-

type and E1-deleted vectors. Furthermore, 

pre-exposure to adenovirus impacted the 

functional clearance of viral transgenes in B-

cell-deficient mice, underscoring the 

significance of memory T cell responses. 
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These results highlight the critical role of 

CTLs in controlling adenoviral infections 

and have direct implications for improving 

adenoviral vector design, vaccination 

strategies, and immunotherapy in 

immunocompromised patients. 

 Keywords: adenovirus, cytotoxic T 
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Introduction:  

Human adenoviruses (HAdVs) are non-enveloped, double-stranded DNA viruses that measure 

70–100 nm in diameter and have a characteristic icosahedral capsid [1] .HAdVs can cause a broad 

range of clinical syndromes in childhood, typically involving the respiratory tract, conjunctiva, or 

gastrointestinal (GI) tract. [2,3]. Severe, life-threatening manifestations such as respiratory failure 

[4,5], myocarditis[6], or encephalitis [7,8] though rare, can occur in otherwise healthy infants and 

children, with neonates being the most vulnerable [9]. HAdVs are currently subdivided into seven 

species designated A through G within the Adenoviridae family [7,9]. Historically, HAdVs were 

classified as serotypes using traditional serologic methods, serum neutralization, and 

hemagglutination inhibition assays [10] 

With recent advances in molecular diagnostics and whole genome sequencing, over 100 distinct 

HAdV genotypes have now been identified (National Center for Biotechnology Information 

(NIH)/[11]. Infection with adenovirus occurs worldwide and has been associated with 3%-5% of 

cases of acute lower respiratory tract infection (ALRI) in infants and children. [12]. Although the 

positive detection rate of adenovirus in patients with respiratory infection is low, its fatal 

infections in immunocompromized patients arise considerable attention of pediatricians. [13]  

The hexon protein, the most abundant capsid protein, is a strong stimulator in BALB/c (H-2d) 

mice [15] and also contains a conserved human CD4+ epitope[ 14]  

Adenovirus (ADV) infections after allogeneic stem cell transplantation (SCT) are emerging as an 

important cause of morbidity and mortality [15]. Although the immune response to adenoviral 

vectors has been studied extensively [16]. Recently, we have shown that T cells specifically 

secreting interferon-y (IFN-y) can be isolated and expanded to functionally active T-cell lines in a 

clinical grade protocol [17]. 

Antigen-specific T cells are an essential part of the immune responses required to control viral 

infection. Frequencies of these T cells may extensively increase in response to an acute infection 

and normally decline after successful control of the virus [18]. Adenovirus (ADV) infections after 

allogeneic stem cell transplantation (SCT) are emerging as an important cause of ADV-specific T 

cells were documented in blood samples of solid organ transplant recipients and healthy 

individuals [19]. Recently, we have shown that T cells specifically secreting interferon-y (IFN-y) 

can be isolated and expanded to functionally active T-cell lines in a clinical grade protocol [20].  

These specific immune defenses employ B and T lymphocytes to help combat viral infection and 

develop long term immunological memory against recurring infections  
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Anti-Histamines 

Another well-characterized category of drugs, anti-histamines, may also combat viral infections 

by influencing the way in which the virus enters the cells but without physically affecting the virus 

directly [21]. Antihistamines can play a huge role in combating chronic diseases such as atopic 

asthma as well as viral infections through changing Thl /Th2 homeostasis by increasing the 

stimulation of Thl cells and the release of IL-2 and IFNy cytokines whilst inhibiting Th2 

activation, which in turn reduces eosinophilic inflammation and prevents airway hypersensitivity 

in mice [22]. Such studies highlight anti-histamines as good candidates for antiviral treatments as 

they have excellent safety profiles from previous characterizations whilst being affordable.  

Vitamin D 

Vitamin D is a fat-soluble steroid primarily known to help maintain healthy homeostasis in bone 

mineral density and general health with supplements administered to individuals at greater risk of 

osteoporosis and bone fractures [23].  

Several clinical studies have been conducted on vitamin D supplementation and their effect on 

respiratory infections, however, the results show conflicting data. Re-occurring respiratory 

infections in children showed a reduction in re-infections after six weeks of vitamin D 

supplements [24].  

Vitamin D can also influence the adaptive immune system, particularly T lymphocyte regulation 

via the upregulation of Th2 cytokines associated with an anti-inflammatory response, whilst 

simultaneously stimulating the differentiation and expansion of regulatory T-cells through VDR 

activation. Mechanisms for vitamin D induced antiviral activity are well-described [25,26], 

however, deciphering these diverse biological activities in the context of different viral infections 

requires further investigation including validated markers of immune modulation [27]. 

Dexamethasone 

Dexamethasone is a corticosteroid affecting the hypothalamic-pituitary-adrenal axis (HPA) for the 

regulation of metabolism, development, homeostasis, and cognition [28]. It targets inflammation 

by binding to the glucocorticoid receptor (GR) on the cell membrane, influencing translocation, 

and promoting immunosuppression by preventing the extension of the cytokine storm [29]. This 

provides a rapid relief of inflammation and hence its use extends to the treatment of rheumatoid 

arthritis [30], Thus, dexamethasone can be used to prevent the persistence and maintenance of the 

immune system [31]. Therefore, there are alterations in the Th ratio that must be due to persistence 

of the immune response. 

The Th bias can be seen to influence disease severity. 
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Figure 1. Immune response to viral infection. Viral infections elicit an immune response by 

first activating the innate immune system. Infected cells release IFN and pro-inflammatory 

cytokines that activate natural killer cells to destroy the viral infection. [32]. 

2. Causes of Deviant Immune Response in Viral Infections 

Much focus has been given to the identification of specific human gene variants responsible for 

enhanced susceptibility or resistance to viral infection and it would be remiss of us not to include 

the genetic underpinnings that control viral infection outcomes; however, these have been 

reviewed elsewhere [33]. Briefly, the comparison of infected versus uninfected individuals have 

elucidated specific genetic factors responsible for divergent immune responses to specific viruses 

resulting in variability in both an individual's susceptibility and outcome (examples in Table 1). 

[34,35].  

 

Figure 2. Aschematic summarizing the causes of a hetrogenous anti-viral immune response 

and possible strategies to address T helper cell imbalance. Created with biorender. [36] 
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Materials and methods 

Animals  

Female BALB/c, C57BL/6, Jh and SCID mice were obtained from Taconic Laboratories at 

approximately 4–6 weeks old and given food and water ad lib. For i.m. vaccinations, the mice 

were injected with 50 ml into each rear quadriceps muscle. All experiments were approved by the 

Institutional Animal Care and Use Committee.  

Cell lines and viruses  

Cell culture media and reagents were obtained from Invitrogen Corp. unless stated otherwise. 

WtAd5 was obtained from the ATCC and propagated in Hela cells. The Hela cells were grown in 

monolayer in minimum essential medium, alpha medium supplemented with 100 U/ml penicillin, 

100 mg/ml streptomycin, 4 mM L- glutamine and 10% (v/v) UV-irradiated fetal bovine serum. 

AdE1- and Ad5SEAP were propagated in PER.C6 cells [37] grown in monolayer in William’s 

Medium E Modified (Hyclone) supplemented as above. AdE1- and Ad5SEAP are replication-

incompetent first generation vectors containing E1 region deletions from nt 342 to 3523 and in the 

case of Ad5SEAP an E3 deletion from nt 28 133 to 30 818. In Ad5SEAP, the secreted alkaline 

phosphatase (SEAP) transgene [1] is located in the E1 region in the E1 antiparallel orientation. 

Transcription of Adenovirus T-cell response T McKelvey et al the transgene is driven by the 

human cytomegalovirus promoter including Intron A [38] and terminated using the bovine growth 

hormone polyadenylation signal.  

Peptides 

Were custom synthesized by Research Genetics. 

ELISPOT 

The ELISPOT assay was performed as previously descibed. [39]. Spleens were harvested from 

BALB/c, Jh or C57BL/6 mice, minced in K media (RPMI medium 1640 supplemented with 100 

U/ml penicillin, 100 mg/ml streptomycin, 4 mM L-glutamine, 55 mM b-mercaptoetha- nol, 10 

mM HEPES and 10% fetal bovine serum) over a mesh insert and the RBCs lysed with AKC 

lysing buffer. The cells were diluted to 107 cells/ml in K media and 100 ml of the cell suspension 

was added to 100 ml of the appropriate antigen at 2 mg/ml in the well of a 96-well microplate with 

a nitrocellulose bottom coated with capture antibody (purified rat anti-mouse IFN-g, Phar- 

Mingen). The plates were incubated for 18–22 h at 371C in 5% CO2, washed and 100 ml/well 

biotinylated rat anti- mouse IFN-g (PharMingen) was added. The plates were washed again and 

100 ml/well streptavidin-AP conjugate (PharMingen) was added. Color was developed by adding 

100 ml/well 1-STEP NBT-BCIP (Pierce) for 5–10 min. Spots were counted and the spot-forming 

cells (SFC) per 106 cells were calculated. The nonspecific mitogen concanavalin A was the 

positive control and produced a solid color in all assays.  

SEAP assay  

Blood was collected from mice via the tail vein and sera collected after centrifugation. The sera 

was heat-treated for 30 min at 65 C to inactivate endogenous alkaline phosphatase activity and the 

secreted alkaline phospha- tase activity measured using a Tropix Phospha-Light luminescence 

assay (Applied Biosystems). The light output over 5s was measured on a Dynex MLX 

luminometer and relative luminescence output con- verted to ng/ml of SEAP by linear regression 

of an alkaline phosphatase (Sigma) standard curve. 

Results 

Identification of adenovirus epitopes The CD8 þ epitopes of adenovirus type 5 hexon and DNA-

binding protein were identified as shown in Figure 1. The primary sequence of the hexon protein 

was divided into 24-mer peptides overlapping by 12 amino acids, which were then grouped into 

pools of 10 peptides and tested in the ELISPOT assay against mice vaccinated with wild-type Ad5 
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(wtAd5). The DNA-binding protein was divided into 22-mer peptides overlapping by 11 amino 

acids, which were also grouped into pools of 10 peptides and tested in the ELISPOT assay. 

Individual peptides from pools that scored positive were then tested in the assay against CD4 þ - 

and CD8 þ -depleted splenocytes. In BALB/c mice, the hex21 24-mer peptide (amino acids 481–

504, LPDKLKYSPSNVKISDNPNTYDYM) and the dbp43 22-mer peptide (amino acids 409–

430, LGRQLPKLTPFALSNAEDLDAD) were identified to contain strong CD8 þ epitopes. In 

C57BL/6 mice, the dbp43 22-mer peptide (amino acids 409–430, 

LGRQLPKLTPFALSNAEDLDAD) was identified to have the principal CD8 þ epitope. Shorter 

9-mer peptides (hex3: KYSPSNVKI, dbp7: LPKLTPFAL, dbp43: FALSNAEDL) were 

synthesized and tested for each of the three identified epitopes. Each of these peptides gave signals 

as high or higher than the longer peptides and was used for all subsequent assays. 

BALB/c mice were vaccinated with 108 viral particles of wtAd5 and 4 weeks later tested in the 

ELISPOT assay against the hex and dbp peptides. The results of 10 vaccinated mice and three 

unvaccinated mice tested are shown in Table 1. In vaccinated mice, the SFC/106 ranged from 151 

to 570 with an average of 310 and a s.d. of 130 for the hex3 peptide. Against the dbp7 peptide, the 

number of spot-forming cells per million ranged from 321 to 628 with an average of 456 and a s.d. 

of 111. Given the range of responses, we found it appropriate to conduct most assays using cells 

from three pooled spleens. 

Immune response of wild type versus E1- deleted adenovirus  

Most of our studies were performed with wild-type Ad, whereas most of the gene therapy and 

vaccine studies are conducted using replication defective, E1 region adenovirus vectors. We 

compared wild type and E1 region virus in the ELISPOT assay in order to examine the effect of 

the deletion of the E1 region on CMI. BALB/c and C57BL/6 mice were primed with 108 viral 

particles of wtAd5 or Ad5E1, boosted 4 weeks later with the same vector, and tested t3 or 6 weeks 

later in ELISPOT assays. The results are displayed in Table 2. For both strains, deletion of the E1 

region did not significantly change the T-cell responses. Functional role of T cells in B-cell-

deficient mice and pre-existing immunity we also investigated the functional role of T cells in the 

antiadeno immune response using adenovirus vectors encoding the secreted alkaline phosphatase 

(SEAP) gene. 

Discussion 

We demonstrate that BALB/c and C57BL/6 mice have strong cell-mediated immune responses to 

adenovirus serotype 5 proteins as determined with the ELISPOT IFN-g assay. BALB/c mice (H-

2d) recognize CD8 þ epitopes in the adenovirus hexon and DNA-binding protein[46]. C57BL/6 

mice (H-2b) mount a strong CD8 þ response against an epitope in the adenovirus DNA binding 

protein[40]. Possible reasons for the differences seen in the response to the DNA-binding protein 

include the source of antigen, and the nature of the assay. Our source of antigen was peptides, 

which may be more sensitive than the vaccinia virus encoding the entire DNA-binding protein as 

used in the previous study. Also, we used the ELISPOT assay that may be more sensitive than the 

CTL assays performed previously. In people, an immunodominant hexon CD4 þ epitope has been 

previously defined in HLA-A2 donors, [41,45] and adenovirus capsid proteins have previously 

been shown to be targets for cytotoxic T lymphocytes[42,47] We further characterized the 

magnitude and time course of the T-cell response in this model as measured in the ELISPOT 

assay. A dose-dependent increase in the number of IFN-g cells was seen over a range of 105 –108 

viral particles. Higher doses did not induce a stronger ELISPOT response to the target peptides 

(data not shown). Also, the data did not show a consistent increase in the number of CD8 þ T cells 

secreting interferon gamma by a prime/boost regimen over a single vaccination[43,48]. The failure 

of repeated injections of adenovirus to boost the signal in the ELISPOT assay is surprising given 

that we have seen increases in ELISPOT signals to transgenes after repeated vaccinations in 

similar mouse experiments[44,49].  
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Figure 1 Identification of mouse CD8 þ adenovirus protein epitopes. Mice were vaccinated with 

108 viral particles of wtAd5, then boosted 4 weeks later with the same dose. After 4 weeks, the 

spleens were harvested and the splenocytes were tested in an ELISPOT assay. The number of SFC 

per 106 cells (SFC/106) tested for the positive peptides and the peptide pools in which they were 

screened are shown. (a) The hexon protein in BALB/c mice (DNA-binding protein not shown). (b) 

The DNA-binding protein in C57BL/6 mice. 

 

Figure two Dose response of mice to adenovirus vaccination. Mice were injected with 105 –108 

viral particles of wtAd5. After 4 weeks, half were boosted with the same dose. After an additional 

4 weeks, the cells from three spleens were pooled and the number of responding cells was 

determined in the ELISPOT assay. (a) BALB/c response to the hex3 and dbp7 peptides. (b) 

C57BL/6 response to the dbp43 peptide. 
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Table 2 Immune response of wild-type versus E1 adenovirus 

 

 

BALB/c and C57BL/6 mice were primed with 108 viral particles of wild type or Ad5E1 and 

boosted 4 weeks later with the same. After 3 or 6 weeks, the cells from three spleens were pooled 

and tested in the ELISPOT assay against hex or dbp peptides. Data from the BALB/c mice is from 

6 weeks post boost and is 3 weeks post boost for C57BL/6 mice.  

Conclusions  

Blood was collected from mice via the tail vein and sera collected after centrifugation. The sera 

was heat-treated for 30 min at 651C to inactivate endogenous alkaline phosphatase activity and the 

secreted alkaline phosphatase activity measured using a Tropix Phospha-Light luminescence assay 

(Applied Biosystems). The light output over 5 s was measured on a Dynex MLX luminometer and 

relative luminescence output converted to ng/ml of SEAP by linear regression of an alkaline 

phosphatase (Sigma) standard curve. 
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