Protective Effect of Alcoholic Extract and Nanoparticles Extract of Prickly Pear Fruit against Thioacetamide-Induced Nephrotoxicity
Keywords:
cactus pear, Thioacetamide, nephrotoxicity, nanotechnology, renal damageAbstract
Objective: this study was to evaluate the preventive impacts of alcoholic and nano extracts of cactus pear fruit (Opuntia ficus-indica) pulp and peel against thioacetamide (TAA)-induced renal toxicity and tissue damage in male albino rats.
Methods: The study involved rats divided into six groups, each with six animals. The first group was given 0.9% NaCl alone for 14 weeks, while the second group received 200 mg/kg of thioacetamide (TAA) diluted in distilled water to induce renal toxicity. The third group received an alcoholic extract of prickly pear (pulp) at 100 mg/kg, followed by TAA administration. The fourth group received an alcoholic extract of prickly pear (peels) at 100 g/kg, followed by TAA administration. The fifth group received a nano-form extract (pulp) at 54 mg/kg, followed by TAA. The sixth group received a nano-form extract (peels) at 50 mg/kg followed by TAA till the conclusion of the study.
Results: TAA exposure markedly raised renal function creatinine and urea and reduced the level of albumin and glomerular atrophy, widened Bowman’s space, caused destruction of renal tubule walls, detachment of their epithelial lining, congestion of blood vessels between renal tubules, destruction of renal tubule walls, and cellular necrosis. Treatment with alcoholic and nano extracts markedly decreased creatinine and urea levels and increased in the level of albumin and improvement in kidney tissue.
Conclusion: These findings suggest that prickly pear fruit extracts demonstrate significant renal protective effects, potentially hindering the advancement of TAA-induced nephrotoxicity.
References
Gu, Y. Y., Liu, X. S., Huang, X. R., Yu, X. Q., & Lan, H. Y. (2020). Diverse role of TGF-β in kidney disease. Frontiers in cell and developmental biology, 8, 123.
Korbut, A. I., Romanov, V. V., & Klimontov, V. V. (2023). Urinary markers of tubular injury and renal fibrosis in patients with type 2 diabetes and different phenotypes of chronic kidney disease. Life, 13(2), 343.
Begum, Q., Noori, S., & Mahboob, T. (2011). Antioxidant effect of sodium selenite on thioacetamide-induced renal toxicity. Pakistan Journal of Biochemistry and Molecular Biology, 44(1), 21-26.
Silva, F. G. (2004). Chemical-induced nephropathy: a review of the renal tubulointerstitial lesions in humans. Toxicologic pathology, 32(2_suppl), 71-84.
Al-Kuraishy, H. M., Al-Gareeb, A. L. I. I., & Al-Naimi, M. S. S. (2019). Pomegranate attenuates acute gentamicin-induced nephrotoxicity in Sprague-Dawley rats: The potential antioxidant and anti-inflammatory effects. Pomegranate, 12(3), 484e6.
Ghosh S, Sarkar A, Bhattacharyya S, Sil PC (2016) Silymarin protects mouse liver and kidney from thioacetamide induced toxicity by scavenging reactive oxygen species and activating PI3K-Akt pathway. Front Pharmacol 7:481
Staňková, P., Kučera, O., Lotková, H., Roušar, T., Endlicher, R., & Červinková, Z. (2010). The toxic effect of thioacetamide on rat liver in vitro. Toxicology in vitro, 24(8), 2097-2103.
Zargar, S., Alonazi, M., Rizwana, H., & Wani, T. A. (2019). Resveratrol reverses thioacetamide‐induced renal assault with respect to oxidative stress, renal function, DNA damage, and cytokine release in Wistar rats. Oxidative medicine and cellular longevity, 2019(1), 1702959.
Kadir, F. A., Kassim, N. M., Abdulla, M. A., & Yehye, W. A. (2013). Effect of oral administration of ethanolic extract of Vitex negundo on thioacetamide-induced nephrotoxicity in rats. BMC complementary and alternative medicine, 13, 1-8.
Sairazi, N. S. A. M., Sirajudeen, K. N. S., & Sirajudeen, K. N. S. (2020). Natural Products and Their Bioactive Compounds: Neuroprotective Potentials against Neurodegenerative Diseases. Evidence-based Complementary and Alternative Medicine: eCAM, 2020.
Prisa, D. (2021). Opuntia ficus-indica the key plant in climate change: Characteristics, cultivation and uses. GSC Biol. Pharm. Sci, 17(2), 094-105.
Sabtain, B., Farooq, R., Shafique, B., Modassar, M., Ranjha, A. N., Mahmood, S., ... & Rubab, Q. (2021). A narrative review on the phytochemistry, nutritional profile and properties of prickly pear fruit. Open Access J. Biog. Sci. Res, 7(7).
Sharma, P., & Modi, N. (2023). Qualitative and quantitative phytochemical screening and antioxidant potential of different extracts of Opuntia ficus indica fruits. In Biological Forum–An International Journal (Vol. 15, No. 4, pp. 694-701).
Bouaouine, O., Bourven, I., Khalil, F., & Baudu, M. (2018). Identification of functional groups of Opuntia ficus-indica involved in coagulation process after its active part extraction. Environmental Science and Pollution Research, 25, 11111-11119.
Kulkarni, S. J., Maske, K. N., Budre, M. P., & Mahajan, R. P. (2012). Extraction and purification of curcuminoids from Turmeric (Curcuma longa L.). International Journal of Pharmacology and Pharmaceutical Technology, 1(2), 81–84.
Bashi, A. M., Hussein, M. Z., Zainal, Z., & Tichit, D. (2013). Synthesis and controlled release properties of 2, 4-dichlorophenoxy acetate–zinc layered hydroxide nanohybrid. Journal of Solid State Chemistry, 203, 19–24.
Abdelhameed, M., Bashandy, S., Ibrahim, F., Morsy, F., Farid, O., & Elbaset, M. (2022). The Pivotal role of Cerium oxide nanoparticles in thioacetamide-induced hepatorenal injury in rat. Egyptian Journal of Chemistry, 0(0), 0. https://doi.org/10.21608/ejchem.2022.115482.5242
Ebhohon, S. O., Asoya, E. V., Kalu, M., Ugochukwu, O. L., & Inyama, A. J. (2024). Protective Effects of Aqueous-Ethanol Leaf Extract of Justicia Carnea Lindl. and Silymarin on Thioacetamide-Induced Hepatorenal Injury in Rats. Pharmacology and Toxicology of Natural Medicines (ISSN 2756-6838), 4(1–2), 1–9. https://doi.org/10.52406/ptnm.v4i1-2.87
Zeghib, K., & Boutlelis, D. A. (2021). Food Additive (Sodium benzoate)- induced Damage on Renal Function and Glomerular Cells in Rats; Modulating Effect of Aqueous Extract of Atriplex halimus L. Iranian Journal of Pharmaceutical Research: IJPR, 20(1), 296.
Gounden, V., Bhatt, H., & Jialal, I. (2024). Renal function tests. In StatPearls [Internet]. StatPearls Publishing.
El-Hameed, S. A., Ibrahim, I., Awadin, W., & El-Shaieb, A. (2024). Assessment of single and combined administration of ubiquinone and lactoferrin on histopathology, ultrastructure, oxidative stress, and WNT4 expression gene induced by thioacetamide on hepatorenal system of adult male rats. Beni-Suef University Journal of Basic and Applied Sciences, 13(1), 41. https://doi.org/10.1186/s43088-024-00494-w
Zargar, S., Alonazi, M., Rizwana, H., & Wani, T. A. (2019). Resveratrol Reverses Thioacetamide-Induced Renal Assault with respect to Oxidative Stress, Renal Function, DNA Damage, and Cytokine Release in Wistar Rats. Oxidative Medicine and Cellular Longevity, 2019, 1–8. https://doi.org/10.1155/2019/1702959
Bashandy, S. a. E., Awdan, S. a. E., Mohamed, S. M., & Omara, E. a. A. (2020). Allium porrum and Bauhinia Variegata Mitigate Acute Liver Failure and Nephrotoxicity Induced by Thioacetamide in Male Rats. Indian Journal of Clinical Biochemistry, 35(2), 147–157. https://doi.org/10.1007/s12291-018-0803-5
Jorgačević, B., Stanković, S., Filipović, J., Samardžić, J., Vučević, D., & Radosavljević, T. (2022). Betaine modulating MIF-mediated oxidative stress, inflammation and fibrogenesis in thioacetamide-induced nephrotoxicity. Current Medicinal Chemistry, 29(31), 5254-5267.
Sheinenzon, A., Shehadeh, M., Michelis, R., Shaoul, E., & Ronen, O. (2021). Serum albumin levels and inflammation. International journal of biological macromolecules, 184, 857-862.
Zhang, H., & Xu, J. (2024). Unveiling thioacetamide-induced toxicity: Multi-organ damage and omitted bone toxicity. Human & Experimental Toxicology, 43. https://doi.org/10.1177/09603271241241807
McKay, K. A. J. (2025). Antidiabetic properties of Prickly Pear (Opuntia Ficus-Indica) fruit extract. The Undergraduate Research Journal, 10(1), 11.
Taher, N. H. M. (2023). The effect of aqueous and alcoholic extract of Opuntia ficus indica on biochemical parameters and kidney function in rats infected with echinococcosis. GSC Biological and Pharmaceutical Sciences, 25(2), 244–248. https://doi.org/10.30574/gscbps.2023.25.2.0488
Villanueva-Huallpa, J. A., Ruelas, M. G., & Huamán-Gutierrez, O. G. (2025). Efecto nefroprotector del jugo de Opuntia ficus indica variedad morada en ratas inducidas a daño renal por gentamicina. Nutrición Clínica Y Dietética Hospitalaria/Nutrición Clínica, Dietética Hospitalaria, 45(1). https://doi.org/10.12873/451villanueva
Madrigal-Santillán, E., Portillo-Reyes, J., Madrigal-Bujaidar, E., Sánchez-Gutiérrez, M., Mercado-Gonzalez, P., Izquierdo-Vega, J., Vargas-Mendoza, N., Álvarez-González, I., Fregoso-Aguilar, T., Delgado-Olivares, L., Morales-González, Á., Anguiano-Robledo, L., & Morales-González, J. (2022). Opuntia genus in Human Health: A Comprehensive Summary on Its Pharmacological, Therapeutic and Preventive Properties. Part 1. Horticulturae, 8(2), 88. https://doi.org/10.3390/horticulturae8020088
Okur, M. E., Ayla, Ş., Karadağ, A. E., Polat, D. Ç., Demirci, S., & Seçkin, İ. (2020). Opuntia ficus indica fruits ameliorate cisplatin-induced nephrotoxicity in mice. Biological and Pharmaceutical Bulletin, 43(5), 831-838. https://doi.org/10.1248/bpb.b19-01044
El-Said, N. M., Nagib, A. I., Rahman, Z. A., & Deraz, S. F. (2011). Prickly pear [Opuntia ficus-indica (L.) Mill] peels: chemical composition, nutritional value, and protective effects on liver and kidney functions and cholesterol in rats. Funct. Plant Sci. Biotechnol, 5(1), 30-35.
Kim, K. T., Leem, K. H., & Jung, J. H. (2024). Double-blind Randomized placebo-controlled Trials on controlling blood glucose level using the extract from Opuntia ficus-indica var. saboten. The Journal of Korean Medicine, 45(4), 84-98.
Vieira, A. C. A., Ferreira, F. D. S., Araújo, J. M. D. D., Dutra, L. M. G., Batista, K. S., Cordeiro, A. M. T. D. M., & Aquino, J. D. S. (2024). Exploring the Potential Hepatoprotective Properties of Cactus (Cactaceae) in Liver Health and Disease Management: A Brief Review. Livers, 4(2), 287-313.
Wang, J., Rani, N., Jakhar, S., Redhu, R., Kumar, S., Kumar, S., Kumar, S., Devi, B., Simal-Gandara, J., Shen, B., & Singla, R. K. (2023). Opuntia ficus-indica (L.) Mill. - anticancer properties and phytochemicals: current trends and future perspectives. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1236123
Hafeez, H., Israr, B., Butt, M. S., & Faisal, M. N. (2024). Therapeutic Intervention of Opuntia Ficus Indica (L.) Fruit and Seed Powder against CCl 4-Induced Acute Liver Injury in Wistar Rats. Pakistan Veterinary Journal, 44(2).
Lim, J., Jung, W., Kim, W., Moon, K., & Sul, D. (2022). Nephrotoxicity evaluation and proteomic analysis in kidneys of rats exposed to thioacetamide. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-11011-3
Elbaset, M. A., Mohamed, B. M. S. A., Gad, S. A., Afifi, S. M., Esatbeyoglu, T., Abdelrahman, S. S., & Fayed, H. M. (2023). Erythropoietin mitigated thioacetamide-induced renal injury via JAK2/STAT5 and AMPK pathway. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-42210-1
Radwan, A. M., Karhib, M., Fatoh, S. A., & Tousson, E. (2023). Curcumin alleviates Thioacetamide-Induced kidney toxicity in rats: enhancing antioxidant system, and attenuating oxidative stress, DNA damage, and inflammation. Biomedical & Pharmacology Journal, 16(1), 441–450. https://doi.org/10.13005/bpj/2625
El-Hameed, S. A., Ibrahim, I., Awadin, W., & El-Shaieb, A. (2023). Thioacetamide: definition, exposure, hepatic and renal toxicity. Mansoura Veterinary Medical Journal, 24(4). https://doi.org/10.35943/2682-2512.1217
Giraldo-Silva, L., Ferreira, B., Rosa, E., & Dias, A. C. P. (2023). Opuntia ficus-indica Fruit: A Systematic Review of Its Phytochemicals and Pharmacological Activities. Plants, 12(3), 543. https://doi.org/10.3390/plants12030543
Habtemariam, S. (2019). The chemical and pharmacological basis of prickly pear cactus (Opuntia species) as potential therapy for type 2 diabetes and obesity. In Elsevier eBooks (pp. 435–472). https://doi.org/10.1016/b978-0-08-102922-0.00013-4