The Effect of Fertility Hormones Levels on Osteoporosis Infection of Basra Women
Keywords:
Alkaline phosphatase, calcium, magnesium, osteoporosis, phosphorusAbstract
Background: Osteoporosis is the most not unusual stop-degree in postmenopausal ladies characterised by using extensive reduction in bone mass and improvement of osteoporosis. Measurement of bone mass within the backbone Trendy is a reliable degree of bone density and may consequently predict fracture chance Dual-power X-ray absorption size (DXA) is an accurate non-invasive system measuring bone density, with reduced comparison for mistakes and no confusion with the biochemical boundaries of the two factors to locate of the proposed blended mediators.
Methods: The study, set in 2024 in a private laboratory in Basra, southern of Iraq, had 100 participants, including 50 individuals diagnosed with osteoporosis and 50 controls apparently healthy, the age ranged from 20 to 60 years .
Results: Limits of calcium, early morning planetary vision, alkaline phosphatase, nutrient source D, and magnesium blur significant differences between 'two combined groups (P-value > 0.05). In the control institution, the relationship between salty phosphatase and cartilage mineral content material (BMC) and thin field (BA) within the spine changed into great accompanying a equivalence cooperative of − 0.402 and 0.258, respectively (P-income < 0.05) and BMD and T-rating in the femoral narrow connector quantity confirmed a right away and essential friendship accompanying phosphorus (equivalence = 0.368; P worth = 0.038). There changed into a significant relationship betwixt the Z-rating accompanying calcium (equating = 0.358; P cost = 0.044).Assessing Estradiol level in women result are given in picograms in keeping with milliliter(pg/ml). Normal degress fo cinsudered r estradiol are30_400pg/ml for postmenopausal women. And assessing progesterone levels in women, progesterone tiers had been measured in nanograms according to milliter(ng/ml) the chart under shows what is considered to be aordinary progesterone degree for an grownup lady at distinctive ranges of menstruation and being pregnanat, follicular stage of the menstrual cycle<0.7,luteak stage of the menstrual cycle 2_25,first trimester of pregnancy 10_44,second trimester of pregnancy 19.5to 82.5and third trimester of pregnancy 65_290
Statistical analysis showed that osteoporosis was significantly associated with old age, specifically in females, with a p-value of <0.05 bearing statistical significance. Furthermore, BMI has an inverse relationship with BMD, while people living a sedentary life exhibited a greater risk for osteoporosis. These findings highlight the need for early screening and preventive programs for these high-risk groups. The statistical evidence highlights the need for community-level health programs toward education, nutrition, and physical activity to reduce osteoporosis burden.
Conclusion: In the studied population, osteoporosis occurs commonly and severely and is linked with a variety of risk factors including age, sex, and lifestyle modifications.
References
1. Yang, J., et al. (2023). Bibliometrics Analysis and Visualization of Sarcopenia Associated with Osteoporosis. J. Pain Res. 16:821.
2. Wang, H., et al. (2023). Mechanistic Advances in Osteoporosis and Anti-Osteoporosis Therapies. MedComm 4:e244.
3. Brown, J.P., et al. (2021). Mortality in Older Adults Following a Fragility Fracture. BMC Musculoskelet. Disord. 22:105.
4. LeBoff, M.S., et al. (2022). The Clinician’s Guide to Prevention and Treatment of Osteoporosis. Osteoporos. Int. 33:2049–2102.
5. Genant H.K., et al. (1999). Interim report and recommendations of the WHO Task-Force for Osteoporosis. Osteoporos. Int. 10:259–264. doi: 10.1007/s001980050224.
6. González Jiménez E., et al. (2009). Osteoporosis involutivatipo I en la mujerposmenopáusica: Diagnóstico y manejoclínico. REEMO 18:77–84. doi: 10.1016/S1132-8460(09)73462-2.
7. González L.A., et al. (2009). Epidemiología de la osteoporosis. J. Rev. Colomb. Reumatol. 16:61–75. doi: 10.1016/S0121-8123(09)70119-7.
8. Khosla S., et al. (1994). Epidemiology and clinical features of osteoporosis in young individuals. Bone 15:551–555. doi: 10.1016/8756-3282(94)90280-1.
9. Goel, H., et al. (2024). Clinical Use of Trabecular Bone Score: The 2023 ISCD Official Positions. J. Clin. Densitom. 27:101452.
10. Xiao P.L., et al. (2022). Global, regional prevalence, and risk factors of osteoporosis. Osteoporos. Int. doi: 10.1007/s00198-022-06454-3.
11. Sølling, A.S., et al. (2020). Treatment with Zoledronate Subsequent to Denosumab in Osteoporosis. J. Bone Miner. Res. 35:1858–1870.
12. Anderson P.A., et al. (2020). Preoperative bone health assessment and optimization in spine surgery. Neurosurg. Focus 49:E2.
13. Caeiro J.R., González P., Guede D. Biomecánica y hueso (y II): Ensayosenlosdistintosnivelesjerárquicos del hueso y técnicasalternativas para la determinación de la resistenciaósea. J. Rev. Osteoporos. Metab. Miner. 2013;5:99–108. doi: 10.4321/S1889-836X2013000200007. [CrossRef] [Google Scholar]
14. Buck D.W., 2nd, Dumanian G.A. Bone biology and physiology: Part I. The fundamentals. Plast. Reconstr. Surg. 2012;129:1314–1320. doi: 10.1097/PRS.0b013e31824eca94. [PubMed] [CrossRef] [Google Scholar]
15. Salhotra A., Shah H.N., Levi B., Longaker M.T. Mechanisms of bone development and repair. Nat. Rev. Mol. Cell Biol. 2020;21:696–711. doi: 10.1038/s41580-020-00279-w. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
16. Katsimbri P. The biology of normal bone remodelling. Eur. J. Cancer Care. 2017;26:e12740. doi: 10.1111/ecc.12740. [PubMed] [CrossRef] [Google Scholar]
17. Datta H.K., Ng W.F., Walker J.A., Tuck S.P., Varanasi S.S. The cell biology of bone metabolism. J. Clin. Pathol. 2008;61:577–587. doi: 10.1136/jcp.2007.048868. [PubMed] [CrossRef] [Google Scholar]
18. Dempster D.W. Bone microarchitecture and strength. Osteoporos. Int. 2003;14((Suppl. 5)):S54–S56. doi: 10.1007/s00198-003-1474-4. [PubMed] [CrossRef] [Google Scholar]
19. Grabowski P. Physiology of bone. Endocr. Dev. 2009;16:32–48. doi: 10.1159/000223687. [PubMed] [CrossRef] [Google Scholar]
20. García-Aznar J.M., Nasello G., Hervas-Raluy S., Pérez M., Gómez-Benito M.J. Multiscale modeling of bone tissue mechanobiology. Bone. 2021;151:116032. doi: 10.1016/j.bone.2021.116032. [PubMed] [CrossRef] [Google Scholar]
21. Teti A. Bone development: Overview of bone cells and signaling. Curr. Osteoporos. Rep. 2011;9:264–273. doi: 10.1007/s11914-011-0078-8. [PubMed] [CrossRef] [Google Scholar]
22. Marx R.E. Bone and bone graft healing. Oral Maxillofac. Surg. Clin. N. Am. 2007;19:455–466. doi: 10.1016/j.coms.2007.07.008. [PubMed] [CrossRef] [Google Scholar]
23. Sommerfeldt D.W., Rubin C.T. Biology of bone and how it orchestrates the form and function of the skeleton. Eur. Spine J. 2001;10((Suppl. 2)):S86–S95. doi: 10.1007/s005860100283. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
24. Zhao Y., Li Z., Jiang Y., Liu H., Feng Y., Wang Z., Liu H., Wang J., Yang B., Lin Q. Bioinspired mineral hydrogels as nanocomposite scaffolds for the promotion of osteogenic marker expression and the induction of bone regeneration in osteoporosis. ActaBiomater. 2020;113:614–626. doi: 10.1016/j.actbio.2020.06.024. [PubMed] [CrossRef] [Google Scholar]