Green Synthesis of Silver Nanoparticles Using Saussurea Costus Methanolic Extract: A Novel Strategy against Multidrug-Resistant Listeria Monocytogenes

Authors

  • Mustafa Emad Sabri Department of Public Health, College of Veterinary Medicine, University of Al-Qadisiyah, Iraq
  • Hayfaa Jumaah Hasan Department of Public Health, College of Veterinary Medicine, University of Al-Qadisiyah, Iraq

Abstract

The rising prevalence of multidrug-resistant (MDR) Listeria monocytogenes in dairy products necessitates innovative control strategies. This study investigated green-synthesized silver nanoparticles (AgNPs) using Saussurea costus methanolic extract against MDR L. monocytogenes from 200 dairy samples (100 raw buffalo milk, 100 local cheese) in Al-Diwaniyah City, Iraq. Isolation involved selective enrichment and chromogenic agar plating, with confirmation via biochemical tests (catalase, beta-hemolysis) and PCR detection of virulence genes (16S rRNA, Ami, Vip). Results revealed 16.5% prevalence (23% milk, 10% cheese; p=0.013). All isolates exhibited MDR, showing complete resistance to aminoglycosides, penicillins, tetracyclines, and cephalosporins, while remaining susceptible to macrolides, carbapenems, and fluoroquinolones. GC-MS analysis identified dehydrocostus lactone (41.52%) as the primary phytoconstituent. AgNPs were successfully synthesized, demonstrating a characteristic UV-Vis peak at 435 nm. FESEM confirmed spherical morphology (76.45±1.32 nm), while FTIR and XRD verified phytochemical capping and crystalline structure. Antibacterial assays showed dose-dependent inhibition, with methanolic AgNPs exhibiting superior activity (22±1.1 mm zone at 100 mg/mL) compared to crude extract (10±0.5 mm). Statistical analysis confirmed significant differences (ANOVA, p<0.001), with strong dose-response correlation (R²=0.99). These findings highlight S. costus-mediated AgNPs as a potent, eco-friendly alternative against MDR L. monocytogenes, offering promising applications in food safety. Further studies should explore large-scale synthesis and in vivo efficacy.

References

1. Kayode, A. J., Semerjian, L., Osaili, T., Olapade, O., & Okoh, A. I. (2021). Occurrence of multidrug-resistant Listeria monocytogenes in environmental waters: a menace of ecological and public health concern. Frontiers in Environmental Science, 9, 737435.‏

2. Allerberger, F., Bagó, Z., Huhulescu, S., Pietzka, A., & Pleininger, S. (2023). Listeriosis: the dark side of refrigeration and ensiling. In Zoonoses: Infections Affecting Humans and Animals (pp. 373-410). Cham: Springer International Publishing.‏EFSA. (2023). The European Union One Health 2022 Zoonoses Report. EFSA Journal, 21(3), 7866.

3. Rippa, A., Bilei, S., Peruzy, M. F., Marrocco, M. G., Leggeri, P., Bossù, T., & Murru, N. (2024). Antimicrobial resistance of Listeria monocytogenes strains isolated in food and food-processing environments in Italy. Antibiotics, 13(6), 525.‏

4. Chowdhury, B., & Anand, S. (2023). Environmental persistence of Listeria monocytogenes and its implications in dairy processing plants. Comprehensive Reviews in Food Science and Food Safety, 22(6), 4573-4599.‏

5. Manyi-Loh, C. E., & Lues, R. (2025). Listeria monocytogenes and Listeriosis: The Global Enigma. Foods, 14(7), 1266.‏

6. Mousavi-Khattat, M., Nourbakhshan, H., Afrazeh, S., Aminorroaya, S. H., & Shakeran, Z. (2022). Donkey dung–mediated synthesis of silver nanoparticles and evaluation of their antibacterial, antifungal, anticancer, and DNA cleavage activities. BioNanoScience, 12(3), 877-889.‏

7. Pattoo, T. A. (2023). Flora to Nano: Sustainable Synthesis of Nanoparticles via Plant-Mediated Green Chemistry. Plant Science Archives.‏

8. Rautela, K., Bisht, Y., Kumar, A., Sharma, A., & Jugran, A. K. (2023). Diverse Ecological and Biological Roles of Secondary Metabolites of Saussurea costus (Falc.) Lipsch. In Plant Specialized Metabolites: Phytochemistry, Ecology and Biotechnology (pp. 1-29). Cham: Springer Nature Switzerland.‏

9. Deabes, M. M., Fatah, A. E., Sally, I., Salem, S. H. E., & Naguib, K. M. (2021). Antimicrobial activity of bioactive compounds extract from Saussurea costus against food spoilage microorganisms. Egyptian Journal of Chemistry, 64(6), 2833-2843.‏

10. Adenaya, A., Adeniran, A. A., Ugwuoke, C. L., Saliu, K., Raji, M. A., Rakshit, A., ... & Könneke, M. (2025). Environmental Risk Factors Contributing to the Spread of Antibiotic Resistance in West Africa. Microorganisms, 13(4), 951.‏

11. Humphries, R., Bobenchik, A. M., Hindler, J. A., & Schuetz, A. N. (2021). Overview of changes to the clinical and laboratory standards institute performance standards for antimicrobial susceptibility testing, M100. Journal of clinical microbiology, 59(12), 10-1128.‏

12. Abeer RM Abd El-Aziz a,⁎, Annadurai Gurusamy b, Monira R Alothman a, Shereen M Shehata c, Sameh M Hisham a, Afnan A Alobathani a,(2020) Silver nanoparticles biosynthesis using Saussurea costus root aqueous extract and catalytic degradation efficacy of safranin dye, Saudi J Biol Sci. Nov 19;28(1):1093–1099. doi: 10.1016/j.sjbs.2020.11.036.

13. Allerberger, F., Bagó, Z., Huhulescu, S., Pietzka, A., & Pleininger, S. (2023). Listeriosis: the dark side of refrigeration and ensiling. In Zoonoses: Infections Affecting Humans and Animals (pp. 373-410). Cham: Springer International Publishing.‏

14. Vesković, S. (2025). Major Foodborne Zoonotic Pathogens. In Natural Food Preservation: Controlling Loss, Advancing Safety (pp. 59-131). Cham: Springer Nature Switzerland.‏

15. World Health Organization. (2023). GLASS manual for antimicrobial resistance surveillance in common bacteria causing human infection. World Health Organization.‏

16. Díaz-Martínez, C., Bolívar, A., Mercanoglu Taban, B., Kanca, N., & Pérez-Rodríguez, F. (2024). Exploring the antibiotic resistance of Listeria monocytogenes in food environments–a review. Critical Reviews in Microbiology, 1-24.‏

17. Koudoum, P. L., Serge Andigema, A., Abena, J., & Matakone, M. (2023). Challenges in Tackling Antimicrobial Resistance in Resource-limited settings: A Cameroonian Case study. Global Scientific Journals, 11(7).‏

18. Mohsen, E., El-Far, A. H., Godugu, K., Elsayed, F., Mousa, S. A., & Younis, I. Y. (2022). SPME and solvent-based GC–MS metabolite profiling of Egyptian marketed Saussurea costus (Falc.) Lipsch. concerning its anticancer activity. Phytomedicine Plus, 2(1), 100209.‏

19. Vaid, P., Saini, A. K., Gupta, R. K., Sinha, E. S., Sharma, D., Alsanie, W. F., ... & Saini, R. V. (2024). Sustainable nanoparticles from Stephania glabra and analysis of their anticancer potential on 2D and 3D models of prostate cancer. Applied Biochemistry and Biotechnology, 196(6), 3511-3533.‏

20. Barua, N., & Buragohain, A. K. (2024). Therapeutic Potential of Silver Nanoparticles (AgNPs) as an Antimycobacterial Agent: A Comprehensive Review. Antibiotics, 13(11), 1106.‏

21. Durán, N., de Jesus, M. B., Dias, Q. C., Nakazato, G., & Fávaro, W. J. (2023). Nanoparticles by Fungi and Cancer Applications. Myconanotechnology: Emerging Trends and Applications, 29.‏

22. Dubey, S., Virmani, T., Yadav, S. K., Sharma, A., Kumar, G., & Alhalmi, A. (2024). Breaking Barriers in Eco‐Friendly Synthesis of Plant‐Mediated Metal/Metal Oxide/Bimetallic Nanoparticles: Antibacterial, Anticancer, Mechanism Elucidation, and Versatile Utilizations. Journal of Nanomaterials, 2024(1), 9914079.‏

23. Kungwani, N. A., Panda, J., Mishra, A. K., Chavda, N., Shukla, S., Vikhe, K., ... & Sharifi-Rad, M. (2024). Combating bacterial biofilms and related drug resistance: Role of phyto-derived adjuvant and nanomaterials. Microbial pathogenesis, 106874.‏

24. Yassin, M. T., Mostafa, A. A. F., Al-Askar, A. A., & Al-Otibi, F. O. (2022). Synergistic antibacterial activity of green synthesized silver nanomaterials with colistin antibiotic against multidrug-resistant bacterial pathogens. Crystals, 12(8), 1057.‏

25. Rather, G. A., Hassan, S., Pal, S., Khan, M. H., Rahman, H. S., & Khan, J. (2021). Antimicrobial efficacy of biogenic silver and zinc nanocrystals/nanoparticles to combat the drug resistance in human pathogens. In Materials at the Nanoscale. IntechOpen.‏

26. Singh, R., Dutt, S., Sharma, P., Sundramoorthy, A. K., Dubey, A., Singh, A., & Arya, S. (2023). Future of nanotechnology in food industry: Challenges in processing, packaging, and food safety. Global Challenges, 7(4), 2200209.‏

27. Pandhi, S., Mahato, D. K., & Kumar, A. (2023). Overview of green nanofabrication technologies for food quality and safety applications. Food Reviews International, 39(1), 240-260.‏

28. Casals, E., Gusta, M. F., Bastus, N., Rello, J., & Puntes, V. (2025). Silver Nanoparticles and Antibiotics: A Promising Synergistic Approach to Multidrug-Resistant Infections. Microorganisms, 13(4), 952.‏

29. Ramos, G. L., Bovo, F., Baptista, R. C., Kamimura, B. A., Magnani, M., & Sant’Ana, A. S. (2024). Impact of silver nanoparticles active packaging on the behavior of Listeria monocytogenes and other microbial groups during ripening and storage of Canastra cheeses. Food Control, 166, 110742.‏

30. Kraśniewska, K., Galus, S., & Gniewosz, M. (2020). Biopolymers-based materials containing silver nanoparticles as active packaging for food applications–a review. International Journal of Molecular Sciences, 21(3), 698.

31. Ibrahim, N. A., Saeed, H. A., Saeed, S. M., Mohamed, O., Suliman, O. H., Ibrahim, S. A., & Mohamed, S. B. (2025). Green synthesis of silver nanoparticles using Sudanese Candida parapsilosis: a sustainable approach to combat antimicrobial resistance. BMC microbiology, 25(1), 1-18.‏ ‏

32. Al-Saggaf, M. S., Tayel, A. A., Ghobashy, M. O., Alotaibi, M. A., Alghuthaymi, M. A., & Moussa, S. H. (2020). Phytosynthesis of selenium nanoparticles using the costus extract for bactericidal application against foodborne pathogens. Green Processing and Synthesis, 9(1), 477-487.‏

Downloads

Published

2025-06-19

How to Cite

Sabri, M. E., & Hasan, H. J. (2025). Green Synthesis of Silver Nanoparticles Using Saussurea Costus Methanolic Extract: A Novel Strategy against Multidrug-Resistant Listeria Monocytogenes. American Journal of Biomedicine and Pharmacy, 2(6), 94–107. Retrieved from https://biojournals.us/index.php/AJBP/article/view/1129